Journal of Polymer Research

, 14:489 | Cite as

Surface enrichment of polypropylene-graft-poly(methyl methacrylate) on polypropylene

  • Hanjia J. Chen
  • Yafei F. Zhu
  • Yi Zhang
  • Jiarui R. Xu


To overcome disadvantage of polypropylene induced by its low surface energy, poly(methyl methacrylate) was grafted onto polypropylene and entrapped into polypropylene as macromolecular surface modifier. The effects of copolymer structures, contact dies and content of modifiers on their surface enrichment were studied by attenuated total reflection infrared spectroscopy (ATR-FTIR), contact angle measurements (CDA) and scanning electron microscopy (SEM). Lower content and higher surface energy dies were in favor of the copolymer to enrich on the PP surface. PPw-g-PMMA with low PMMA graft density, long length of PMMA was distributed in PP with smaller phase domains and concentration gradient, especially at lower loadings in blends, which favored its selective enrichment on the surface of PP. The modified material exhibited excellent solvent-resistance. The results indicated that PPw-g-PMMA can transfer to the surface of blends and effectively increase the hydrophilicity of PP, which offer a convenient technique to functionalize the surface of polymers with lasting-effectiveness compared with modification by homopolymers.


Polypropylene Polypropylene-graft-poly(methyl methacrylate) Macromolecular surface modifier Blend surface modification ATR-FTIR 


  1. 1.
    Chan CM (1994) Polymer surface modification and characterization. Hanser, New York, p 172Google Scholar
  2. 2.
    Bamford CH, Al-Lamee KG (1994) Polymer 35:2844CrossRefGoogle Scholar
  3. 3.
    Singh RP (1992) Prog Polym Sci 17:251CrossRefGoogle Scholar
  4. 4.
    Bergberiter DE, Stinivas B (1992) Macromolecules 25:636CrossRefGoogle Scholar
  5. 5.
    Lee H, Archer LA (2002) Polymer 43:2721CrossRefGoogle Scholar
  6. 6.
    Bergbreiter DE, Hu HP, Hein MD (1989) Macromolecules 22:654CrossRefGoogle Scholar
  7. 7.
    Hallden A, Wessle, B (2000) J Appl Polym Sci 75:316CrossRefGoogle Scholar
  8. 8.
    Bergbreiter DE, Brian W, Gray HN (1998) Macromolecules 31:3417CrossRefGoogle Scholar
  9. 9.
    Zhou X, Zhu YF, Xu JR (2003) J Funct Polym 16:347Google Scholar
  10. 10.
    Qian H, Zhou X, Xu JR (2003) J Funct Polym 16:184Google Scholar
  11. 11.
    Qian H, Zhou X, Xu JR (2003) Acta Sci Nat Univ Sunyatseni 42:30Google Scholar
  12. 12.
    Chen HJ, Zhu YF, Zhang Y, Xu JR (2006) J Funct Polym 32:638Google Scholar
  13. 13.
    Lee H, Archer LA (2002) Polymer 43:2721CrossRefGoogle Scholar
  14. 14.
    Chen HJ, Zhu YF, Zhang Y, Xu JR (2006) China Plastic Ind 34:11Google Scholar
  15. 15.
    Schmitt JJ, Gardella JA Jr, Salvati L Jr (1989) Macromolecules 22:4489CrossRefGoogle Scholar
  16. 16.
    Bribbs D, Chan H, Hearn MJ, McBriar DI, Munro HS (1990) Langmuir 6:420–424CrossRefGoogle Scholar
  17. 17.
    Fayt R, Jerome R, Teyessie P (1989) ACS Symp Ser 345:38–66CrossRefGoogle Scholar
  18. 18.
    Yasuda H, Sharma AK, Yasuda T (1981) J Polym Sci Polym Phys Ed 19:1285CrossRefGoogle Scholar
  19. 19.
    Harrick NJ (1967) Internal reflectance spectroscopy. Wiley-Interscience, New York, p 89Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Hanjia J. Chen
    • 1
    • 2
  • Yafei F. Zhu
    • 3
  • Yi Zhang
    • 1
  • Jiarui R. Xu
    • 1
  1. 1.School of chemistry and chemical Engineering, Key Laboratory for Polymeric Composite and Functionality Materials of Education, Materials Science InstituteSun Yat-sen UniversityGuangzhouPeople’s Republic of China
  2. 2.School of ScienceShantou UniversityShantouPeople’s Republic of China
  3. 3.Instrument and Testing CenterSun Yat-sen UniversityGuangzhouPeople’s Republic of China

Personalised recommendations