Journal of Polymer Research

, Volume 13, Issue 4, pp 267–275 | Cite as

Application of the Conant-Finkelstein Reaction to the Modification of PVC: Iodinated PVC

  • Saâd Moulay
  • Zakia Zeffouni


The Conant-Finkelstein reaction was applied to PVC with the aiming of replacing the chlorine atoms with iodine ones. The effect of reaction temperature with regard to the characteristics of the modified PVC was significant. Formation of a gel and degraded polymeric materials was observed when working at temperatures higher than 60 °C. The degraded polymer formed at 70 °C was insoluble and gave rise to a polyacetylene-like chain with a melting point of 60 °C. However, the reaction on PVC at lower temperatures resulted in soluble polymers which were easily amenable to spectral characterization. The molecular weights of the iodine-modified PVCs were temperature-dependent. At 40, 45, 50 and 60 °C, molecular weights lower than that of the initial PVC were measured; however, at 35, 30 and 25 °C, a gain of about 9% in molecular weight was seen. Substitution and elimination reactions occurred to different extents depending mostly on temperature. Optimal substitution was obtained at 50 °C for a reaction time of 20 h.

Key words

Conant-Finkelstein reaction degree of substitution PVC syndiotacticity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Maréchal, in: Comprehensive Polymer Science, Vol. 67, G. C. Eastmond, A. Ledwith, S. Russo, P. Sigwalt, (Eds.), Pergamon, Oxford, 1989, Chapter 1, pp. 1–47.Google Scholar
  2. 2.
    W. H. Starnes Jr. and S. Girois, Polym. Yearb., 12, 105–131 (1995).Google Scholar
  3. 3.
    D. Braun, J. Polym. Sci. Part A Polym. Chem., 42, 578–586 (2004).CrossRefGoogle Scholar
  4. 4.
    E. E. Gilbert, J. Polym. Sci. Polym. Chem. Ed., 22, 3603–3606 (1984).CrossRefGoogle Scholar
  5. 5.
    G. Martinez, C. Mijangos and J. Millàn, Polym. Bull. 23, 233–238 (1990).CrossRefGoogle Scholar
  6. 6.
    N. Guarrotxena, G. Martinez and J. Millàn, Acta Polym., 50, 180–186 (1999).CrossRefGoogle Scholar
  7. 7.
    G. Martinez and J. Millàn, Macromol. Chem. Phys., 201, 1709–1717 (2000).CrossRefGoogle Scholar
  8. 8.
    R. P. Kusy, J. Q. Whitley, R. P. Buck, V. V. Cosofret and E. Linder, Polymer, 35, 2141–2147 (1994).CrossRefGoogle Scholar
  9. 9.
    O. S. Rodriguez-Fernandez and M. Gilbert, J. Appl. Polym. Sci., 66, 2121–2128 (1997).CrossRefGoogle Scholar
  10. 10.
    J. Guan and W. Yang, J. Appl. Polym. Sci., 77, 2569–2574 (2000).CrossRefGoogle Scholar
  11. 11.
    L. Bromberg and G. Levin, J. Appl. Polym. Sci., 49, 1529–1535 (1993).CrossRefGoogle Scholar
  12. 12.
    H. Reinecke and C. Mijangos, Macromol. Chem. Phys., 199, 2199–2204 (1998).CrossRefGoogle Scholar
  13. 13.
    S. Moulay, Khimiya/Chemistry, 11, 217–244 (2002).Google Scholar
  14. 14.
    M. A. R. Meier and U. S. Schubert, J. Polym. Sci. Part A Polym. Chem., 41, 2964–2973 (2003).CrossRefGoogle Scholar
  15. 15.
    Z. Pi and J. P. Kennedy, J. Polym. Sci. Part A Polym. Chem., 39, 1675–1680 (2001).CrossRefGoogle Scholar
  16. 16.
    N. Bicak, B. F. Senkal and M. Gazi, Polym. Bull., 51, 231–236 (2003).CrossRefGoogle Scholar
  17. 17.
    Z. Pi and J. P. Kennedy, J. Polym. Sci. Part A Polym. Chem., 39, 307–312 (2001).CrossRefGoogle Scholar
  18. 18.
    B. A. Trofimov, A. M. Vasil’tsov, O. V. Petrova, A. I. Mikhaleva, G. F. Myachima, S. A. Korihova, T. A. Skotheim, Y. V. Mikhlailik and J. I. Vakul’skaya, Phys. Chem., 9, 1709–1715 (2002).Google Scholar
  19. 19.
    J. Brandrup and E. H. Immergut, Polymer Handbook, 2nd Edn., Wiley, New York, 1975.Google Scholar
  20. 20.
    D. A. Skoog, D. M. West and F. J. Holler, Chimie Analytique, DeBoeck and Larcier, Paris, 1997, Chapter 5, p. 77.Google Scholar
  21. 21.
    E. Simon, P. Frayesse and A. J. M. S. Perichaud, Pure Appl. Chem., A29, 893 (1992).Google Scholar
  22. 22.
    M. Hesse, H. Meier, B. Zeeh, Méthodes Spectroscopiques Pour la Chimie Organique, Masson, Paris, 1997.Google Scholar
  23. 23.
    E. Schröder, G. Müller and K. F. Arndt, Polymer Characterization, Oxford University Press, Oxford, 1989.Google Scholar
  24. 24.
    C. A. Buehler and D. E. Pearson, Survey of Organic Synthesis, Wiley-Interscience, New York, 1970.Google Scholar
  25. 25.
    M. Okawara and Y. Ochiai, in: Modification of Polymers. ACS Symposium Series 121, C. E. Carraher Jr. and M. Tsuda, (Eds.), American Chemical Society, Washington, 1980, p. 41.Google Scholar
  26. 26.
    T. H. Lowry and K. S. Richardson, Mechanism and Theory in Organic Chemistry, Harper and Row, New York, 1976.Google Scholar
  27. 27.
    G. Champetier, Chimie Macromoléculaire I, Hermann, Paris, 1970.Google Scholar
  28. 28.
    A. Petit, S. Moulay and T. Aouak, Eur. Polym. J., 35, 953–963 (1999), and references therein.Google Scholar
  29. 29.
    C. I. Simionescu, V. Bulacovschi, D. Macocinschi, G. Stoica and I. I. Negulescu, Polym. Bull., 19, 59–63 (1988).CrossRefGoogle Scholar
  30. 30.
    D. Lopez, H. Reinecke, M. Hidalgo and C. Mijangos, Polym. Int., 44, 1–10 (1997).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Laboratoire de Chimie-Physique Moléculaire et Macromoléculaire, Faculté des Sciences de l’Ingénieur, Département de Chimie IndustrielleUniversité de BlidaBlidaAlgeria

Personalised recommendations