Journal of Youth and Adolescence

, Volume 48, Issue 1, pp 71–85 | Cite as

Developmental Change in Adolescent Delinquency: Modeling Time-Varying Effects of a Preventative Intervention and GABRA2 Halpotype Linked to Alcohol Use

  • Gabriel L. SchlomerEmail author
  • H. Harrington Cleveland
  • Arielle R. Deutsch
  • David J. Vandenbergh
  • Mark E. Feinberg
  • Mark T. Greenberg
  • Richard L. Spoth
  • Cleve Redmond
Empirical Research


Better integrating human developmental factors in genomic research is part of a set of next steps for testing gene-by-environment interaction hypotheses. This study adds to this work by extending prior research using time-varying effect modeling (TVEM) to evaluate the longitudinal associations between the PROSPER preventive intervention delivery system, a GABRA2 haplotype linked to alcohol use, and their interaction on adolescent delinquency. Logistic and Poisson analyses on eight waves of data spanning ages 11 to 19 (60% female, 90% Caucasian) showed the intervention reduced delinquency from ages 13 to 16. Moreover, interaction analysis revealed that the effect of the multicomponent intervention was significantly greater for T-allele carriers of the GABRA2 SNP rs279845, but only during the 13 to 16 age period. The results are discussed in terms of adolescent delinquency normativeness, implications for preventive intervention research, and the utility of incorporating development in GxE research.


Delinquency GABRA2 Intervention GxE Genetic 



The authors would like to thank Dr. Deborah Grove and Ms. Ashley Price of the Penn State Genomics Core Facility for DNA purification and genotyping. For participant recruitment we recognize the efforts of Shirley Huck, Cathy Owen, Debra Bahr, and Anthony Connor of the Iowa State University Survey and Behavioral Research Services; Rob Schofield and Dean Stankowski of the Penn State University Survey Research Center; and Lee Carpenter, Kerry Hair, and Amanda Griffin of Penn State.

Authors’ Contributions

GS conceived the analyses reported in this article, drafted the manuscript, and analyzed and interpreted the data; AD helped analyze and interpret the data; HC, DV, MF, MG, RS, and CR conceived of the study, participated in its design and coordination, and helped draft the manuscript. All authors read and approved the final manuscript.


Work on this article was supported by the National Institute of Drug Abuse (grants DA030389 and DA013709). All authors read and approved the final manuscript.

Data Sharing and Declaration

This manuscript’s data is not publicly available.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards

Informed Consent

Informed consent was obtained from all individual participants included in the study.


  1. Albert, D., Belsky, D., Crowley, D. M., Latendresse, S. J., Aliev, F., Riley, B., Dick, D. M., & Dodge, K. (2015). Can genetics predict response to complex behavioral interventions? Evidence from a genetic analysis of the Fast Track randomized control trial. Journal of Policy Analysis and Management, 34, 497–518.CrossRefGoogle Scholar
  2. Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2015). The hidden efficacy of interventions: Gene x environment experiments from a differential susceptibility perspective. Annual Review of Psychology, 66, 11.1–11.29. Scholar
  3. Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2007). For better and for worse. Differential susceptibility to environmental influences. Current Directions in Psychological Science, 16, 300–304.CrossRefGoogle Scholar
  4. Belsky, J., & Pluess, M. (2009). Beyond diathesis stress: differential susceptibility to environmental influences. Psychological Bulletin, 135, 885–908. Scholar
  5. Belsky, J., & van IJzendoorn, M. H. (2015). What works for whom? Genetic moderation of intervention efficacy. Development and Psychopathology, 27, 1–6. Scholar
  6. Bjorklund, D. F., Ellis, B. J., & Rosenberg, J. S. (2007). Evolved probabilistic cognitive mechanisms: An evolutionary approach to gene × environment × development interactions. In R. V. Kail (Ed.), Advances in child development and behavior: Vol. 35. Advances in child development and behavior (pp. 1-36). San Diego, CA, US: Elsevier Academic Press.Google Scholar
  7. Bongers, I. L., Koot, H. M., van der Ende, J., & Verhulst, F. C. (2004). Developmental trajectories of externalizing behaviors in childhood and adolescence. Child Development, 75, 1523–1537.CrossRefGoogle Scholar
  8. Botvin, G. J., & Griffin, K. W. (2014). Life skills training: preventing substance misuse by enhancing individual and social competence. New Directions for Youth Development, 141, 57–65. Scholar
  9. Botvin, G. J., & Kantor, L. W. (2000). Preventing alcohol and tobacco use through life skills training: theory, methods, and emperical findings. Alcohol Research & Health, 24, 250–257.Google Scholar
  10. Botvin, G. J., Griffin, K. W., & Nichols, T. D. (2006). Preventing youth violence and delinquency through a universal school-based prevention approach. Prevention Science, 7, 403–408. Scholar
  11. Boyce, W. T., & Ellis, B. J. (2005). Bioliogical sensitivity to context I: an evolutionary-developmental theory of the origins and functions of stress reactivity. Development and Psychopathology, 17, 271–301. Scholar
  12. Brody, G. H., Chen, Y., & Beach, S. R. H. (2013). Differential susceptibility to prevention: GABAergic, dopaminergic, and multilocus effects. The Journal of Child Psychology and Psychiatry, 54, 863–871. Scholar
  13. Brody, G. H., Beach, S. R. H., Hill, K. G., Howe, G. W., Prado, G., & Fullerton, S. M. (2013). Using genetically informed, randomized prevention trials to test etiological hypotheses about child and adolescent drug use and psychopathology. American Journal of Public Health, 103(Suppl), S19–S24. Scholar
  14. Brody, G. H., Beach, S. R. H., Philibert, R. A., Chen, Y., & Murry, V. M. (2009). Prevention effects moderate the association of 5-HTTLPR and youth risk behavior initiation: Gene x environment hypotheses tested via a randomized prevention design. Child Development, 80, 645–661. Scholar
  15. Burt, S. A. (2012). How do we optimally conceptualize the heterogeniety within antisocial behavior? An argument for aggressive versus non-aggressive behavioral dimensions. Clinical Psychology Review, 32, 263–279. Scholar
  16. Burt, S. A., & Neiderhiser, J. M. (2009). Aggressive versus nonaggressive antisocial behavior: distinctive etiolgical moderation by age. Developmental Psychology, 45, 1164–1176. Scholar
  17. Cleveland, H. H., Schlomer, G. L., Vandenbergh, D. J., Wolf, P. S. A., Feinberg, M. E., Greenberg, M. T., Spoth, R. L., & Redmond, C. (2018). Associations between alcohol dehydrogenase genes and alcohol use across early- and mid-adolescence: moderation by preventative intervention. Development and Psychopathology, 30, 297–313. Scholar
  18. Cleveland, H. H., Schlomer, G. L., Vandenbergh, D. J., & Wiebe, R. P. (2016). Gene x intervention designs: a promising step toward understanding etiology and building better preventative interventions. Journal of Criminology and Public Policy, 15, 711–720.CrossRefGoogle Scholar
  19. Culverhouse, R. C., Saccone, N. L., Horton, A. C., Ma, Y., Anstey, K. J., Banaschewski, T., & Bierut, L. J. (2018). Collaborative meta-analysis finds no evidence of a strong interaction between stress and 5-HTTLPR genotype contributing to the development of depression. Molecular Psychiatry, 23, 133–142. Scholar
  20. Dahl, R. E., & Conway, A. M. (2009). Self-regulation and the developoment of behavioral and emotional problems: toward an integrative conceptual and translational research agenda. In S. L. Olsen & A. J. Sameroff (Eds.), Biopsychosocial regulatory processes in the development of childhood behavior problems. New York, NY: Cambridge University Press.Google Scholar
  21. de Vlaming, R., Okbay, A., Reitveld, C. A., Johannesson, M., Magnusson, P. K. E., Uitterlinden, A. G., & Koellinger, P. D. (2017). Meta-GWAS accuracy and power (MetaGAP) calculator shows that hiding heritibility is paritally due to imperfect genetic correlations across studies. PLoS Genetics, 13, 1–23. Scholar
  22. Dick, D. M. (2013). Developmental considerations in gene identificiation efforts. In J. MacKillop & M. R. Munafò (Eds.), Genetic influences on addiction: an intermediate phenotype approach. Cambridge: The MIT Press.Google Scholar
  23. Dick, D. M., Agrawal, A., Keller, M. C., Adkins, A., Aliev, F., Monroe, S., Hewitt, J. K., Kendler, K. S., & Sher, K. J. (2015). Candidate gene-environment interaction research: reflections and recommendations. Perspectives on Psychological Science, 10, 37–59. Scholar
  24. Dick, D. M., Bierut, L., Hinrichs, A., Fox, L., Bucholz, K. K., Kramer, J., & Foroud, T. (2006). The role of GABRA2 in risk for conduct disorder and alcohol and drug dependence across developmental stages. Behavior Genetics, 36, 577–590.CrossRefGoogle Scholar
  25. Dick, D. M. & EDGE Laboratory (2017). Post-GWAS in psychiatric genetics: a developmental perspective on the “other” next steps. Genes, Brain, & Behavior.
  26. Dick, D. M., Latendresse, S. J., Lansford, J. E., Budde, J. P., Goate, A., Dodge, K. A., & Bates, J. E. (2009). Role of GABRA2 in trajectories of externalizing behavior across development and evidence of moderation by parental monitoring. Archives of General Psychiatry, 66, 649–658.CrossRefGoogle Scholar
  27. Edenberg, H. J., Dick, D. M., Xuei, X., Tian, H., Almasy, L., Bauer, L. O., & Kwon, J. (2004). Variations in GABRA2, encoding the α2 subunit of the GABAA receptor, are associated with alcohol dependence and with brain oscillations. The American Journal of Human Genetics, 74, 705–714.CrossRefGoogle Scholar
  28. Ellickson, P. L., McCaffrey, D. F., Ghosh-Dastidar, B., & Longshore, D. L. (2003). New inroads in preventing adolescent drug use: results from a large-scale trial of project ALERT in middle schools. American Journal of Public Health, 93(11), 1830–1836.CrossRefGoogle Scholar
  29. Ellis, B. J., Boyce, W. T., Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2011). Differential susceptibility to the environment: an evolutionary-neurodevelopmental theory. Development and Psychopathology, 23, 7–28. Scholar
  30. Forsyth, C. J., Dick, S. J., Chen, J., Biggar, R. W., Forsyth, Y. A., & Burstein, K. (2018). Social psychological risk factors, delinquency and age of onset. Criminal Justice Studies, 31, 178–191. Scholar
  31. Glenn, A. L., Lochman, J. E., Dishion, T., Powell, N. P., Boxmeyer, C., & Qu, L. (2018). Oxytocin receptor gene variant interacts with intervention delivery format in predicting intervention outcomes for youth with conduct problems. Prevention Science, 19, 38–48.
  32. Halder, I., Shriver, M., Thomas, M., Fernandez, J. R., & Frudakis, T. (2008). A panel of ancestry informative markers for estimating individual biogeographical ancestry and admixture from four contents: utility and applications. Human Mutation, 29, 648–658.CrossRefGoogle Scholar
  33. Hale, D. R., Fitzgerald-Yau, N., & Viner, R. (2014). A systematic review of effetive interventions for reducing multiple health risk behaviors in adolescence. American Journal of Public Health, 104, e19–e41. Scholar
  34. Janssens, A., van den Noortgate, Goossens, L., Colpin, H., Verschueren, K., Claes, S., & van Leeuwen, K. (2017). Externalizing problem behavior in adolescence: parenting interacting with DAT1 and DRD4 genes. Journal of Research on Adolescence, 27, 278–297. Scholar
  35. Latendresse, S. J., Henry, D. B., Aggen, S. H., Byck, G. R., Ashbeck, A. W., Bolland, J. M., & Dick, D. M. (2017). Dimensionality and genetic correlates of problem behavior in low-income African American adolescents. Journal of Clinical Child & Adolescent Psychology, 46, 824–839. Scholar
  36. Lind, P. A., MacGregor, S., Agrawal, A., Montgomery, G. W., Heath, A. C., Martin, N. G., & Whitfield, J. B. (2008). The role of GABRA2 in alcohol dependence, smoking, and illicit drug use in an Australian population sample. Alcoholism: Clinical and Experimental Research, 32, 1721–1731.CrossRefGoogle Scholar
  37. McNeal, R. B., Hansen, W. B., Harrington, N. G., & Giles, S. M. (2004). How All Stars works: an examination of program effects on mediating variables. Health Education & Behavior, 31, 165–178. Scholar
  38. Moffitt, T. E. (1993). Adolescence-limited and life-course-persistent antisocial behavior: a developmental taxonomy. Psychological Review, 100, 674–701.CrossRefGoogle Scholar
  39. Moffitt, T. E., Caspi, A., Harrington, H., & Milne, B. J. (2002). Males on the life-course-persistent and adolescence-limited antisocial pathways: follow-up at age 26 years. Development and Psychopathology, 14, 179–207.CrossRefGoogle Scholar
  40. Musci, R. & Schlomer, G. L. (2018). Incorporating genetics in prevention science: considering methodology and implications. Prevention Science, 19, 1–5.
  41. Open Science Collaboration. (2015). Estimating the reproducibility of psychological science. Science, 349, aac4716 Scholar
  42. Purcell, S. M. & Chang, C. C. (2015). PLINK 1.9.
  43. Rodriguez, S., Gaunt, T. R., & Day, I. N. M. (2009). Hardy-Weinberg equilibrium testing of biological ascertainment for Mendelian randomization studies. American Journal of Epidemiolgy, 169, 505–514. Scholar
  44. Rose, R. J., & Dick, D. M. (2010). Commentary on Agrawal et al. (2010): social environments modulate alcohol use. Addiction, 105, 1854–1855.CrossRefGoogle Scholar
  45. Russell, M. A., Schlomer, G. L., Cleveland, H. H., Feinberg, M., Greenberg, M., Spoth, R., & Vandenbergh, D. J. (2018). PROSPER intervention effects on adolescents’ alcohol misuse vary by GABRA2 genotype and age. Prevention Science, 19, 27–37.CrossRefGoogle Scholar
  46. SAS Institute Inc. 2011. SAS® 9.3 Statements: Reference. Cary, NC: SAS Institute Inc.Google Scholar
  47. Schlomer, G. L., Cleveland, H. H., Vandenbergh, D. J., Feinberg, M. E., Neiderhiser, J. M., Greenberg, M. T., & Redmond, C. (2015). Developmental differences in early adolescent aggression: a gene × environment × intervention analysis. Journal of Youth and Adolescence, 44, 581–597. Scholar
  48. Schlomer, G. L., Cleveland, H. H., Feinberg, M. E., Wolf, P. S. A., Greenberg, M. T., Spoth, R. L., Redmond, C., Tricou, E. P., & Vandenbergh, D. J. (2017). Extending previous cGxI findings on 5-HTTLPR’s moderation of intervention effects on adolescent substance misuse initiation. Child Development, 88, 2001–2012. Scholar
  49. Sieghart, W. (2006). Structure, pharmacology, and function of GABAA receptor subtypes. Advances in Pharmacology, 54, 251–263.Google Scholar
  50. Simons, R. L., Chao, W., Conger, R. D., & Elder, G. H. (2001). Quality of parenting as mediator of the effect of childhood defiance on adolescent friendship choices and delinquency. A growth curve analysis. Journal of Marriage and Family, 63, 63–79.CrossRefGoogle Scholar
  51. Simons, R. L., Simons, L. G., Lei, M., Beach, S. R. H., Brody, G. H., Gibbons, F. X., & Philibert, R. A. (2013). Genetic moderation of the impact of parenting on hostility toward romantic partners. Journal of Marriage and Family, 75, 325–341. Scholar
  52. Spoth, R., Greenberg, M., Bierman, K., & Redmond, C. (2004). PROSPER community-university partnership model for public education systems: capacity-building for evidence-based, competence-building prevention. Prevention Science, 5, 31–39.CrossRefGoogle Scholar
  53. Spoth, R., Redmond, C., Clair, S., Shin, C., Greenberg, M., & Feinberg, M. (2011). Preventing substance misuse through community–university partnerships: randomized controlled trial outcomes 4½ years past baseline. American Journal of Preventive Medicine, 40, 440–447.CrossRefGoogle Scholar
  54. Spoth, R., Redmond, C., Shin, C., Greenberg, M., Clair, S., & Feinberg, M. (2007). Substance-use outcomes at 18 months past baseline: the PROSPER community-university partnership trial. American Journal of Preventive Medicine, 32, 395–402. Scholar
  55. Spoth, R., Redmond, C., Shin, C., Greenberg, M., Feinberg, M., & Schainker, L. (2013). PROSPER community–university partnership delivery system effects on substance misuse through 6 1/2years past baseline from a cluster randomized controlled intervention trial. Preventive Medicine, 56, 190–196. Scholar
  56. Spoth, R., Redmond, C., Shin, C., Greenberg, M. T., Feinberg, M. E., & Trudeau, L. (2017). PROSPER delivery of universal preventtive interventions with young adolescence: long-term effects on emerging adult substance misuse and assocaited risk behviors. Psychological Medicine. Scholar
  57. Spoth, R. L., Trudeau, L. S., Redmond, C., Shin, C., Greenberg, M. T., Feinberg, M. E., & Hyun, G. (2015). PROSPER partnership delivery system: effects on adolescent conduct problem behavior outcomes through 6.5 years past baseline. Journal of Adolescence, 45, 44–55.CrossRefGoogle Scholar
  58. Steinberg, L., & Monahan, K. C. (2007). Age differences in resistence to peer influence. Developmental Psychology, 43, 1531–1543. Scholar
  59. Tan, X., Shiyko, M. P., Li, R., Li, Y., & Dierker, L. (2012). A time-varying effect model for intensive longitudinal data. Psychological Methods, 17, 61–77.CrossRefGoogle Scholar
  60. Tropf, F. C., Lee, S. H., Verweij, R. M., Stulp, G., van der Most, P. J., de Vlaming, R., & Mills, M. C. (2017). Hidden heritability due to heterogeneity across seven populations. Nature Human Behavior, 1, 757–765. Scholar
  61. Trucco, E. M., Cope, L. M., Burmeister, M., Zucker, R. A., & Heitzeg, M. M. (2018). Pathways to youth behavior: the role of genetic, neural, & behavioral markers. Journal of Research on Adolescence, 28, 26–39. Scholar
  62. Trucco, E. M., Schlomer, G. L., & Hicks, B. M. (2018). A developmental perspective on the genetic basis of alcohol use disorder. In H. E. Fitzgerald & L. I. Puttler (Eds.), Alcohol Use Disorders: A Developmental Science Approach to Etiology. New York, NY: Oxford University Press.Google Scholar
  63. Trucco, E. M., Villafuerete, S., Heitzeg, M. M., Burmeister, M., & Zucker, R. A. (2016). Susceptibility effects of GABA receptor subunit alpha-2 (GABRA2) variants and parental monitoring on externalizing behavior trajectories: risk and protection conveyed by the minor allele. Development and Psychopathology, 28, 15–26. Scholar
  64. Trucco, E. M., Villafuerete, S., Heitzeg, M. M., Burmeister, M., & Zucker, R. A. (2017). Beyond risk: prospective effects of GABA receptor subunit alpha-2 (GABRA2) x positive peer involvement on adolescent behavior. Development and Psychopathology, 29, 711–724.CrossRefGoogle Scholar
  65. Trucco, E. M., Villafuerete, S., Heitzeg, M. M., Burmeister, M., & Zucker, R. A. (2014). Rule breaking mediates the developmental association between GABRA2 and adolescent substance use. Journal of Child Psychology and Psychiatry, 55, 1372–1379.CrossRefGoogle Scholar
  66. Widaman, K. F., Helm, J. L., Castro-Schilo, L., Pluess, M., & Belsky, J. (2012). Distinguishing ordinal and disordinal interactions. Psychological Methods, 17, 615–622. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Gabriel L. Schlomer
    • 1
    Email author
  • H. Harrington Cleveland
    • 2
  • Arielle R. Deutsch
    • 3
  • David J. Vandenbergh
    • 4
  • Mark E. Feinberg
    • 5
  • Mark T. Greenberg
    • 2
    • 5
  • Richard L. Spoth
    • 6
  • Cleve Redmond
    • 6
  1. 1.Division of Educational Psychology and Methodology, University at AlbanyState University of New YorkAlbanyUSA
  2. 2.Department of Human Development and Family StudiesThe Pennsylvania State UniversityUniversity ParkUSA
  3. 3.Sanford ResearchSioux FallsUSA
  4. 4.Department of Biobehavioral Health, Huck Institute for the Neurosciences, Molecular Cellular & Integrative Biosciences ProgramThe Pennsylvania State UniversityUniversity ParkUSA
  5. 5.Prevention Research CenterThe Pennsylvania State UniversityUniversity ParkUSA
  6. 6.Partnerships in Prevention Science InstituteIowa State UniversityAmesUSA

Personalised recommendations