Advertisement

Journal of Youth and Adolescence

, Volume 43, Issue 6, pp 971–990 | Cite as

Profiles of Problematic Behaviors Across Adolescence: Covariations with Indicators of Positive Youth Development

  • Miriam R. Arbeit
  • Sara K. Johnson
  • Robey B. Champine
  • Kathleen N. Greenman
  • Jacqueline V. Lerner
  • Richard M. Lerner
Empirical Research

Abstract

Previous analyses of data from the 4-H Study of Positive Youth Development (PYD) have examined concurrent trajectories of positive development and risk/problem behaviors among adolescents, finding complex and not necessarily inverse relationships among them. In this article, we expand on prior research by employing a person-centered approach to modeling risk behaviors, assessing development from approximately 6th grade through 12th grade among 4,391 adolescents (59.9 % female). Latent profiles involving the problematic behaviors of delinquency, depressive symptoms, substance use, sexual activity, disordered eating behaviors, and bullying were then assessed for concurrent relationships with the Five Cs of PYD: Competence, Confidence, Character, Caring, and Connection. We found six latent profiles, based primarily on mental health, aggression, and alcohol use, with significant differences in Confidence levels among many of the profiles, as well as some differences in the four other Cs. We discuss directions for future research and implications for application to youth policies and programs.

Keywords

Positive youth development Risk behaviors Profile analysis 

Notes

Acknowledgments

This research was supported in part by grants from the National 4-H Council, the Altria Corporation, the Thrive Foundation for Youth, and the John Templeton Foundation.

Author contributions

MA conceived of the study, participated in its design and the statistical analysis, supervised the literature review, drafted the manuscript, and coordinated the process; SK conceived of the study, participated in its design, planned the statistical analyses, and lead the analytic process; RC participated in the design of the study, helped with the tables, and conducted the literature review; KG participated in the design of the study, prepared the dataset, and conducted the descriptive statistical analyses; JL is the Scientific Director on the project, participated in the design of the study, and provided feedback on the manuscript drafts; RL is the Principal Investigator on the project, and provided feedback on the manuscript drafts. All authors read and approved the final manuscript.

References

  1. Allen, J. P., Porter, M. R., Mcfarland, F. C., Marsh, P., & Mcelhaney, K. B. (2005). The two faces of adolescents’ success with peers: Adolescent popularity, social adaptation, and deviant behavior. Child Development, 76(3), 747–760.PubMedCentralPubMedCrossRefGoogle Scholar
  2. Asparouhov, T., & Muthén, B. O. (2013). Auxiliary variables in mixture modeling: A 3-step approach using Mplus. Mplus Web Notes, 15, 1–48.Google Scholar
  3. Benson, P. L., Mannes, M., Pittman, K., & Ferber, T. (2004). Youth development, developmental assets and public policy. In R. M. Lerner & L. Steinberg (Eds.), Handbook of adolescent psychology (2nd ed., pp. 781–814). New York, NY: Wiley.Google Scholar
  4. Collins, L. M., & Lanza, S. T. (2010). Latent class and latent transition analysis: With applications in the social, behavioral, and health sciences. New York, NY: Wiley.Google Scholar
  5. Crockett, L. J., Raffaelli, M., & Shen, Y. L. (2006). Linking self-regulation and risk proneness to risky sexual behavior: Pathways through peer pressure and early substance use. Journal of Research on Adolescence, 16(4), 503–525.CrossRefGoogle Scholar
  6. Diamond, L. M., & Savin-Williams, R. C. (2009). Adolescent sexuality. In L. Steinberg & R. M. Lerner (Eds.), Handbook of adolescent psychology (3rd ed., pp. 479–523). New York: Wiley.Google Scholar
  7. Diego, M. A., Field, T. M., & Sanders, C. E. (2003). Academic performance, popularity, and depression predict adolescent substance abuse. Adolescence, 38, 35–42.PubMedGoogle Scholar
  8. Dworkin, J. (2005). Risk taking as developmentally appropriate experimentation for college students. Journal of Adolescent Research, 20(2), 219–241.CrossRefGoogle Scholar
  9. Fay, K., & Lerner, R. M. (2013). Weighing in on the issue: A longitudinal analysis of the influence of selected individual factors and the sports context on the developmental trajectories of eating pathology among adolescents. Journal of Youth and Adolescence, 42(1), 33–51.PubMedCrossRefGoogle Scholar
  10. Garner, D. M., Olmstead, M. P., & Polivy, J. (1983). Development and validation of a multidimensional eating disorder inventory for anorexia nervosa and bulimina. International Journal of Eating Disorder, 2, 15–34.CrossRefGoogle Scholar
  11. Geldhof, G. J., Bowers, E. P., Mueller, M. K., Napolitano, C. M., Schmid, K. L., & Lerner, R. M. (2014). Longitudinal analysis of a very short measure of positive youth development. Journal of Youth and Adolescence. doi: 10.1007/s10964-014-0093-z.
  12. Hamilton, S. F. (1999). A three-part definition of positive youth development. Unpublished manuscript. Ithaca, NY: Cornell University.Google Scholar
  13. Johnston, L. D., O’Malley, P. M., & Bachman, J. G. (2001). Monitoring the future national survey results on drug use, 1975–2000. Volume I: Secondary school students. Bethesda, MD: National Institute on Drug Abuse.Google Scholar
  14. Jung, T., & Wickrama, K. A. (2008). An introduction to latent class growth analysis and growth mixture modeling. Social and Personality Psychology Compass, 2, 302–317.CrossRefGoogle Scholar
  15. Lanza, S. T., Rhoades, B. L., Nix, R. L., & Greenberg, M. T. (2010). Modeling the interplay of multilevel risk factors for future academic and behavior problems: A person-centered approach. Development and Psychopathology, 22(2), 313–335.PubMedCentralPubMedCrossRefGoogle Scholar
  16. Leffert, N., Benson, P. L., Scales, P. C., Sharma, A. R., Drake, D. R., Dale, A., et al. (1998). Developmental assets: Measurement and prediction of risk behaviors among adolescents developmental assets. Applied Developmental Science, 2(4), 37–41.Google Scholar
  17. Lerner, R. M. (1984). On the nature of human plasticity. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  18. Lerner, R. M. (2005). Promoting positive youth development: Theoretical and empirical bases. White paper prepared for the Workshop on the Science of Adolescent Health and Development, National Research Council/Institute of Medicine. Washington, D.C.: National Academies of Science.Google Scholar
  19. Lerner, R. M. (2011). Structure and process in relational, developmental systems theories: A commentary on contemporary changes in the understanding of developmental change across the life span. Human Development, 54(1), 34–43.CrossRefGoogle Scholar
  20. Lerner, J. V., Bowers, E. P., Minor, K., Lewin-Bizan, S., Boyd, M. J., Mueller, M. K. et al. (2013). Positive youth development: Processes, philosophies, and programs. In R. M. Lerner, M. A., Easterbrooks, & J. Mistry (Eds.), Handbook of psychology, Volume 6: Developmental psychology (2nd ed.). Editor-in-chief: I. B. Weiner. (pp. 365–392). Hoboken, NJ: Wiley.Google Scholar
  21. Lerner, J. V., Phelps, E., Forman, Y., & Bowers, E. P. (2009a). Positive youth development. In R. M. Lerner & L. Steinberg (Eds.), Handbook of adolescent psychology (3rd ed., Vol. 1, pp. 524–558). New York: Wiley.CrossRefGoogle Scholar
  22. Lerner, R. M., von Eye, A., Lerner, J. V., & Lewin-Bizan, S. (2009b). Exploring the foundations and functions of adolescent thriving within the 4-H Study of Positive Youth Development: A view of the issues. Journal of Applied Developmental Psychology, 30(5), 567–570.CrossRefGoogle Scholar
  23. Lerner, R. M., von Eye, A., Lerner, J. V., Lewin-Bizan, S., & Bowers, E. P. (2010). Special issue introduction: The meaning and measurement of thriving: A view of the issues. Journal of Youth and Adolescence, 39(7), 707–719.PubMedCrossRefGoogle Scholar
  24. Lewin-Bizan, S., Lynch, A. D., Fay, K. E., Schmid, K. L., McPherran, C., Lerner, J. V., et al. (2010). Trajectories of positive and negative behaviors from early- to middle-adolescence. Journal of Youth and Adolescence, 39(7), 751–763. doi: 10.1007/s10964-010-9532-7.PubMedCrossRefGoogle Scholar
  25. Lo, B. Y., Mendell, N. R., & Rubin, D. B. (2001). Testing the number of components in a normal mixture. Biometrika, 88(3), 767–778.CrossRefGoogle Scholar
  26. Mayeux, L., Sandstrom, M. J., & Cillessen, A. H. N. (2008). Is being popular a risky proposition? Journal of Research on Adolescence, 18(1), 49–74.CrossRefGoogle Scholar
  27. Mays, D., Depadilla, L., Thompson, N. J., Kushner, H. I., & Windle, M. (2010). Sports participation and problem alcohol use: A multi-wave national sample of adolescents. American Journal of Preventive Medicine, 38(5), 491–498.PubMedCentralPubMedCrossRefGoogle Scholar
  28. McCoy, T. P., Ip, E. H., Blocker, J. N., Champion, H., Rhodes, S. D., Wagoner, K. G., et al. (2009). Attrition bias in a U.S. internet survey of alcohol use among college freshmen. Journal of Studies on Alcohol and Drugs, 70(4), 606–614.PubMedCentralPubMedGoogle Scholar
  29. McLachlan, G. L., & Peel, D. (2000). Finite mixture models. New York, NY: Wiley.CrossRefGoogle Scholar
  30. Molenaar, P. C. M., & Nesselroade, J. R. (2009). The recoverability of P-technique factor analysis. Multivariate Behavioral Research, 44(1), 130–141.CrossRefGoogle Scholar
  31. Muthén, B. O., & Muthén, L. K. (2000). The development of heavy drinking from age 18-37 in a U.S. national sample. Journal of Studies on Alcohol, 61, 290–300.PubMedGoogle Scholar
  32. Nesselroade, J. R., & Ford, D. H. (1985). P-technique comes of age: Multivariate, replicated, single-subject designs for research on older adults. Research on Aging, 7(1), 46–80.PubMedCrossRefGoogle Scholar
  33. Nylund, K. L., Asparouhov, T., & Muthén, B. O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling: A Multidisciplinary Journal, 14(4), 535–569.CrossRefGoogle Scholar
  34. Olweus, D. (1996). The revised Olweus Bully/Victim Questionnaire. Bergen: Mimeo, Research Center for Health Promotion (HEMIL), University of Bergen.Google Scholar
  35. Orth, U., Robins, R. W., & Roberts, B. W. (2008). Low self-esteem prospectively predicts depression in adolescence and young adulthood. Journal of Personality and Social Psychology, 95, 695–708.PubMedCrossRefGoogle Scholar
  36. Overton, W. F. (2013). Relationism and relational developmental systems: A paradigm for developmental science in the post-Cartesian era. In R. M. Lerner & P. L. Benson (Eds.), Advances in Child Development and Behavior, 44, 21–64.Google Scholar
  37. Phelps, E., Balsano, A. B., Fay, K. E., Peltz, J. S., Zimmerman, S. M., Lerner, R. M., et al. (2007). Nuances in early adolescent developmental trajectories of positive and problematic/risk behaviors: Findings from the 4-H study of positive youth development. Child and Adolescent Psychiatric Clinics of North America, 16(2), 473–496.PubMedCrossRefGoogle Scholar
  38. Pittman, K., Irby, M., & Ferber, T. (2001). Unfinished business: Further reflections on a decade of promoting youth development. Trends in youth development: Visions, realities and challenges, 6, 4–50.Google Scholar
  39. Post, A., Gilljam, H., Bremberg, S., & Galanti, M. R. (2012). Psychosocial determinants of attrition in a longitudinal study of tobacco use in youth. The Scientific World Journal, 2012, 654030. doi: 10.1100/2012/654030
  40. Radloff, L. S. (1977). The CES-D Scale: A self-report depression scale for research in the general population. Applied Psychological Measurement, 1(3), 385–401.CrossRefGoogle Scholar
  41. Rubin, K.H., Bukowski, W., & Parker, J. G. (1998). Peer interactions, relationships, and groups. In Handbook of Child Psychology (5th ed.), Volume 3: Social, emotional, and personality development. (pp. 619–700). New York, NY: Wiley.Google Scholar
  42. Schaie, K. W., & Strother, C. R. (1968). The effect of time and cohort differences on the interpretation of age changes in cognitive behavior. Multivariate Behavioral Research, 3(3), 259–293.CrossRefGoogle Scholar
  43. Schulenberg, J. E. (2006). Understanding the multiple contexts of adolescent risky behavior and positive development: Advances and future directions. Applied Developmental Science, 10(2), 107–113.CrossRefGoogle Scholar
  44. Schulenberg, J. E., & Maggs, J. L. (2002). A Developmental perspective on alcohol use and heavy drinking during adolescence and the transition to young adulthood. Journal of Studies on Alcohol. Supplement, 14, 54–70.PubMedGoogle Scholar
  45. Schwartz, S. J., Phelps, E., Lerner, J. V., Huang, S., Brown, C. H., Lewin-Bizan, S., et al. (2010). Promotion as prevention: Positive youth development as protective against tobacco, alcohol, illicit drug, and sex initiation. Applied Developmental Science, 14(4), 197–211.CrossRefGoogle Scholar
  46. Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464.CrossRefGoogle Scholar
  47. Solberg, M. E., & Olweus, D. (2003). Prevalence estimation of school bullying with the Olweus Bully/Victim Questionnaire. Aggressive Behavior, 29, 239–268.CrossRefGoogle Scholar
  48. Tucker, J. S., Ellickson, P. L., Orlando, M., Martino, S. C., & Klein, D. J. (2005). Substance use trajectories from early adolescence to emerging adulthood: A comparison of smoking, binge drinking, and marijuana use. Journal of Drug Issues, 35(2), 307–332.CrossRefGoogle Scholar
  49. Wiesner, M., & Windle, M. (2004). Assessing covariates of adolescent delinquency trajectories: A latent growth mixture modeling approach. Journal of Youth and Adolescence, 33(5), 431–442.CrossRefGoogle Scholar
  50. Zand, D., Thomson, N. R., Dugan, M., Braun, J. A., Holterman-Hommes, P., & Hunter, P. L. (2006). Predictors of retention in an alcohol, tobacco, and other drug prevention study. Evaluation Review, 30(2), 209–222.PubMedCrossRefGoogle Scholar
  51. Zarrett, N., Fay, K. E., Li, Y., Carrano, J., Phelps, E., & Lerner, R. M. (2009). More than child’s play: Variable- and pattern-centered approaches for examining effects of sports participation on youth development. Developmental Psychology, 45(2), 368–382.PubMedCrossRefGoogle Scholar
  52. Zimmerman, S. M., Phelps, E., & Lerner, R. M. (2008). Positive and negative developmental trajectories in U.S. adolescents: Where the positive youth development perspective meets the deficit model. Research in Human Development, 5(3), 153–165.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Miriam R. Arbeit
    • 1
  • Sara K. Johnson
    • 1
  • Robey B. Champine
    • 1
  • Kathleen N. Greenman
    • 1
  • Jacqueline V. Lerner
    • 2
  • Richard M. Lerner
    • 1
  1. 1.Institute for Applied Research in Youth DevelopmentTufts UniversityMedfordUSA
  2. 2.Boston CollegeChestnut HillUSA

Personalised recommendations