Advertisement

The Northern Iranian Central Plateau at the End of the Pleistocene and Early Holocene: The Emergence of Domestication

  • Hamed Vahdati NasabEmail author
  • Sanaz Shirvani
  • Solange Rigaud
Article

Abstract

Until recently, the Iranian Central Plateau (ICP) was considered to have been unoccupied at the end of the Pleistocene (Marshall 2012 in ‘Missing Links: Demic Diffusion and the Development of Agriculture on the Central Iranian Plateau’. Durham University e-Theses. http://etheses.dur.ac.uk/3547/), raising questions about the mechanisms that drove Neolithic diffusion in this area. However, recent field data has provided new insights into the rise of domestication here. Reassessment of the local chronology during the Early Holocene reveals consistent occupation of the ICP throughout the Epipaleolithic/Mesolithic. Plant and animal remains indicate that Mesolithic communities preserved a purely foraging lifestyle, yet data for the Early Neolithic shows that communities produced fully domesticated resources. This clear economic rupture suggests the introduction of farming technologies from other regions. Additionally, the central geographic position of the ICP between the Zagros and western Central Asia, and the correspondence in material culture between the eastern sites of the ICP and the Zagros suggest that the region was a hot spot of connections favourable to the eastward diffusion of the Neolithic.

Keywords

Iranian Central Plateau Domestication Southeastern Caspian Sea Mesolithic Neolithic 

چکیده

تا همین اواخر، فلات مرکزی ایران از جانب برخی (Marshall, 2012) بعنوان سرزمینی خالی از سکنه در پایان پلیئستوسن انگاشته میشد که خود دربردارندۀ پرسشهایی اساسی دربارۀ نحوۀ نفوذ نوسنگی به منطقه بوده است. این درحالی است که یافتههای جدید ناشی از فعالیتهای میدانی چشماندازهای جدیدی را در ارتباط با شروع اهلیسازیها در این منطقه گشوده است. بازنگری گاهنگاریهای محلی ابتدای هُلوسن حاکی از وجود استقرارهای انسانی در خلال فراپارینهسنگی/میانسنگی در فلات مرکزی است. دادههای گیاهی و جانوری منطقه نشان دادهاند که جوامع میانسنگی سبک زندگی مبتنی بر معیشت گردآوری و شکار داشتند، در عین حال، یافتههای حاصل از محوطههای ابتدای نوسنگی حاکی از تولید منابع کاملا اهلیشده است. چنین گسست واضح معیشتی به معنی ورود فناوریهای مرتبط با کشاورزی به منطقه از مناطقی دیگر است. ضمن اینکه موقعیت جغرافیایی فلات مرکزی ایران میان زاگرس و غرب آسیای مرکزی و همخوانی مواد فرهنگی محوطههای نوسنگی لبۀ شرقی فلات مرکزی و زاگرس بیانگر این است که این منطقه (فلات مرکزی ایران) محلی کلیدی در مسیر گسترش نوسنگی به سمت شرق بوده است.

Résumé

Jusqu’à récemment, les mécanismes de diffusion du mode de vie néolithique sur le Plateau Central Iranien (PCI) ont été largement débattus et la région était considérée inoccupée à la fin du Pléistocène (Marshall, 2012). De nouvelles données de terrain offrent d’autres perspectives quant à l’adoption de la domestication sur le PCI. La révision de la chronologie régionale du début de l’Holocène montre une occupation durable du plateau au cours de l’Epipaléolithique et du Mésolithique. Les vestiges de faunes et de plantes montrent que les communautés mésolithiques ont préservé une économie reposant exclusivement sur la chasse et la cueillette. En revanche, les données sur le début du Néolithique indiquent que les sociétés exploitaient des ressources pleinement domestiquées. Cette rupture économique claire suggère l’introduction des technologies agricoles en provenance d’autres régions. De plus, la position centrale du PCI entre le Zagros et l’Ouest de l’Asie Centrale et les correspondances dans la culture matérielle entre les sites localisés à l’est du PCI et le Zagros suggère que la région était une zone clef pour établir et maintenir des réseaux de contacts favorables à la diffusion du Néolithique vers l’Est.

Mots clefs

Plateau Central Iranien Domestication Mer Caspienne Mésolithique Néolithique 

Notes

Acknowledgements

We would like to thank the anonymous reviewers of the Journal of World Prehistory for their constructive and useful comments. We also like to thank Sarah Wright for her productive help. This work was supported by the French National Research Agency under the IDEX Bordeaux NETAWA Emergence Project No. ANR-10-IDEX-03-02 ‘Out of the Core: Exploring social NETworks at the dawn of Agriculture in Western Asia 10 000 years ago’.

References

  1. Ammerman, A. J., & Biagi, P. (2003). The widening harvest. The Neolithic transition in Europe: Looking back, looking forward. Boston: Archaeological Institute of America.Google Scholar
  2. Azizi, G., Akbari, T., Hashemi, H., Yamani, M., Maghsoudi, M., & Abasi, A. (2013). Pollen analysis for reconstruction the palaeoclimatic phases in Lake Neor during the late-Pleistocene to Holocene. Physical Geography Research Quarterly, 45(1), 1–20.Google Scholar
  3. Barker, G. (2009). The agricultural revolution in prehistory: Why did foragers become farmers? Oxford: Oxford University Press.Google Scholar
  4. Bar-Yosef, O., & Belfer-Cohen, A. (1989). The origins of sedentarism and farming communities in the Levant. Journal of World Prehistory, 3(4), 447–498.CrossRefGoogle Scholar
  5. Bar-Yosef, O., & Valla, F. (1990). The Natufian culture and the origin of the Neolithic in the Levant. Current Anthropology, 31(4), 433–436.CrossRefGoogle Scholar
  6. Binford, L. R. (1968). Post-Pleistocene adaptations. In S. R. Binford & L. R. Binford (Eds.), New perspectives in archaeology (pp. 313–341). Chicago: Aldine.Google Scholar
  7. Birks, H. H., Gelorini, V., Robinson, E., & Hoek, W. Z. (2015). Impacts of Paleoclimate change 60000–8000 years ago on humans and their environments in Europe: Integrating palaeoenvironmental and archaeological data. Quaternary International, 378, 4–13.CrossRefGoogle Scholar
  8. Bocquet-Appel, J.-P. (2002). Paleoanthropological traces of a Neolithic demographic transition. Current Anthropology, 43, 637–650.CrossRefGoogle Scholar
  9. Bocquet-Appel, J.-P. (2008). The Neolithic demographic transition, population, pressure and cultural change. Comparative Civilizations Review, 58, 36–49.Google Scholar
  10. Bocquet-Appel, J.-P., Naji, S., Linden, M. V., & Kozlowski, J. K. (2009). Detection of diffusion and contact zones of early farming in Europe from the space–time distribution of 14C dates. Journal of Archaeological Science, 36, 807–820.CrossRefGoogle Scholar
  11. Bordes, J. G., & Shidrang, S. (2009). La séquence Baradostienne de Yafteh (Khorramabad, Lorestan, Iran). In M. Otte, F. Biglari, & J. Jaubert (Eds.), Iran Palaeolithic/Le paléolithique d’Iran: Proceedings of the XV world congress UISPP 28 (Lisbon, 49 September 2006), session C15. British Archaeological Reports International Series 1968 (pp. 85–100). Oxford: Archaeopress.Google Scholar
  12. Bowles, S. (2011). Cultivation of cereals by the first farmers was not more productive than foraging. Proceedings of the National Academy of Sciences, 108(12), 4760–4765.CrossRefGoogle Scholar
  13. Broushaki, F., Thomas, M. G., Link, V., López, S., van Dorp, L., Kirsanow, K., et al. (2016). Early Neolithic genomes from the eastern Fertile Crescent.  https://doi.org/10.1126/science.aaf7943.Google Scholar
  14. Brown, T. A., Jones, M. K., Powell, W., & Allaby, R. G. (2009). The complex origins of domesticated crops in the Fertile Crescent. Trends in Ecology & Evolution, 24(2), 103–109.CrossRefGoogle Scholar
  15. Brown, K. S., Marean, C. W., Jacobs, Z., Schoville, B. J., Oestmo, S., Fisher, E. C., et al. (2012). An early and enduring advanced technology originating 71,000 years ago in South Africa. Nature, 491(7425), 590–593.CrossRefGoogle Scholar
  16. Civáň, P., Ivaničová, Z., & Brown, T. A. (2013). Reticulated origin of domesticated emmer wheat supports a dynamic model for the emergence of agriculture in the Fertile Crescent. PLoS ONE, 8(11), e81955.CrossRefGoogle Scholar
  17. Clauer, N., Chaudhuri, S., Toulkeridis, T., & Blanc, G. (2000). Fluctuations of Caspian Sea level: Beyond climatic variations? Geology, 28(11), 1015–1018.CrossRefGoogle Scholar
  18. Conard, Nicholas, & Ghasidian, E. (2011). The Rostamian culture group and the taxonomy of the Iranian upper Paleolithic. In N. J. Conard, P. Drechsler, & A. Morales (Eds.), Between sand and sea: The archaeology and human ecology of southwestern Asia. Festschrift in honor of Hans-Peter Uerpmann. Tübinger Monographien zur Urgeschichte (pp. 33–52). Tübingen: Kerns Verlag.Google Scholar
  19. Conard, N. J., Ghasidian, E. & Heydari Guran, S. (2009).The open-air late paleolithic site of Bardia and the paleolithic occupation of the Qaleh Gusheh sand dunes, Esfahan Province, Iran. In M. Otte, F. Biglari, & J. Jaubert (Eds.), Iran Palaeolithic/Le paléolithique d’Iran: Proceedings of the XV world congress UISPP 28 (Lisbon, 49 September 2006), session C15. British Archaeological Reports International Series 1968 (pp. 141–154). Oxford: Archaeopress.Google Scholar
  20. Conard, N. J., Ghasidian, E., Heydari, S., Naderi, R., & Zeidee, M. (2007). The 2006 season of the Tübingen Iranian Stone Age Research Project in the provinces of Fars and Markazi. In Fazeli, H. (Ed.), Archaeological reports 7.2. On the occasion of the 9th Annual Symposium on Iranian Archaeology (pp. 43–67). Tehran: ICAR.Google Scholar
  21. Coolidge, J. (2005). Southern Turkmenistan in the Neolithic: A petrographic case study. Oxford: Archaeopress.Google Scholar
  22. Coon, C. S. (1951). Cave explorations in Iran, 1949. Philadelphia: University of Pennsylvania Museum.Google Scholar
  23. Coon, C. S. (1952). Excavations in Hotu cave, Iran, 1951: A preliminary report. Proceedings of the American Philosophical Society, 96(3), 231–249.Google Scholar
  24. Davis, R. S. (1990). Central Asian hunter-gatherers at the Last Glacial Maximum. In O. Soffer & C. Gamble (Eds.), The world at 18000 BP. Vol. 1: High latitudes (pp. 266–275). London: Unwin Hyman.Google Scholar
  25. Davis, R. S., & Ranov, V. A. (1999). Recent work on the Paleolithic of Central Asia. Evolutionary Anthropology Issues News and Reviews, 8(5), 186–193.CrossRefGoogle Scholar
  26. Derevianko, A. P. (2010). Three scenarios of the Middle to Upper Paleolithic transition. Archaeology, Ethnology and Anthropology of Eurasia, 38(4), 2–38.CrossRefGoogle Scholar
  27. Diamond, J. (1999). Guns, germs and steel: The fates of human societies. New York: Norton.Google Scholar
  28. Djamali, M., de Beaulieu, J. L., Shah-Hosseini, M., Andrieu-Ponel, V., Ponel, P., Amini, A., et al. (2008). A Late Pleistocene long pollen record from Lake Urmia, NW Iran. Quaternary Research, 69(3), 413–420.CrossRefGoogle Scholar
  29. Fisher, W. B. (1968). Physical geography. In W. B. Fisher (Ed.), The Cambridge history of Iran. Volume 1: The land of Iran (pp. 1–110). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  30. Flannery, K. (1969). Origins and ecological effects of early domestication in Iran and the Near East. In P. Ucko & G. Dimbleby (Eds.), The domestication of plants and animals (pp. 73–100). London: Aldine.Google Scholar
  31. Fuller, D. Q., Denham, T., Arroyo-Kalin, M., Lucas, L., Stevens, C. J., Qin, L., et al. (2014a). Convergent evolution and parallelism in plant domestication revealed by an expanding archaeological record. Proceedings of the National Academy of Sciences, 111(17), 6147–6152.CrossRefGoogle Scholar
  32. Fuller, D. Q., Lucas, L., & Stevens, C. (2014b). Charred remains from Tappeh Sang-e Chakhmaq, and a consideration of early wheat diversity on the eastern margins of the Fertile Crescent. In The first farming village in northeast Iran and Turan: Tappeh Sang-e Chakhmaq and beyond, February 1011, 2014 (program and abstracts). Tsukuba: University of Tsukuba.Google Scholar
  33. Fuller, D. Q., Willcox, G., & Allaby, R. G. (2012). Early agricultural pathways: Moving outside the ‘core area’ hypothesis in Southwest Asia. Journal of Experimental Botany, 63(2), 617–633.CrossRefGoogle Scholar
  34. Gregg, M. W., & Thornton, C. P. (2012). A preliminary analysis of prehistoric pottery from Carleton Coon’s excavations of Hotu and Belt Caves in northern Iran: Implications for future research into the emergence of village life in western Central Asia. International Journal of Humanities, 19(3), 56–94.Google Scholar
  35. Groucutt, H. S., Petraglia, M. D., Bailey, G., Scerri, E. M., Parton, A., Clark-Balzan, L., et al. (2015). Rethinking the dispersal of Homo sapiens out of Africa. Evolutionary Anthropology: Issues, News, and Reviews, 24(4), 149–164.CrossRefGoogle Scholar
  36. Harlan, J. R. (1995). The living fields: Our agricultural heritage. Cambridge: Cambridge University Press.Google Scholar
  37. Harris, D. (2010). Environmental changes in the Pleistocene and Holocene. In D. Harris (Ed.), Origins of agriculture in western Central Asia: An environmental–archaeological study (pp. 19–26). Philadelphia: University of Pennsylvania Museum of Archaeology and Anthropology.Google Scholar
  38. Harris, D. R., Damania, A. B., Valkoun, J., Willcox, G., & Qualset, C. O. (1998). The spread of Neolithic agriculture from the Levant to western Central Asia. In A. B. Damania, J. Valkoun, G. Willcox, & C. O. Qualset (Eds.), The origins of agriculture and crop domestication: Proceedings of the Harlan symposium, 1014 May 1997, Aleppo, Syria (pp. 65–82). Aleppo: International Center for Agricultural Research in the Dry Areas.Google Scholar
  39. Heydari Guran, S., & Ghasidian, E. (2011). Palaeolithic survey in the Arisman region, western Central Iranian Plateau. In A. Vatandoust, H. Parzinger & B. Helwing (Eds.), Early mining and metallurgy on the western Central Iranian Plateau: Report on the first five years of research of the Joint IranianGerman Research Project. Archäologie in Iran und Turan 9 (pp. 484–493). Mainz am Rhein: Philipp von Zabern.Google Scholar
  40. Ilkani, H. (2012). Preliminary report of Komishan archaeobotanical studies. Unpublished report.Google Scholar
  41. Jayez, M., & Vahdati Nasab, H. (2016). A separation: Caspian Mesolithic vs Trialetian lithic industry: A research on the excavated site of Komishan, southeast of the Caspian Sea, Iran. Paléorient, 42(1), 75–94.CrossRefGoogle Scholar
  42. Karimi, A., Frechen, M., Khademi, H., Kehl, M., & Jalalian, A. (2011). Chronostratigraphy of loess deposits in northeast Iran. Quaternary International, 234(1–2), 124–132.CrossRefGoogle Scholar
  43. Kehl, M. (2009). Quaternary climate change in Iran: The state of knowledge. Erdkunde, 63(1), 1–17.CrossRefGoogle Scholar
  44. Knapp, Z. E. (2012). A zooarchaeological study of the Epi-Palaeolithic faunal assemblage from Komishan Cave, Mazandaran, Iran. Unpublished dissertation presented for MSc in Bioarchaeology. Department of Archaeology, University of Nottingham, UK.Google Scholar
  45. Krinsley, D. B., & Air Force Cambridge Research Laboratories, Geological Survey. (1970). A geomorphological and paleoclimatological study of the playas of Iran. Bedford, MA/Washington, DC: U.S. Air Force, Cambridge Research Laboratories/Geological Survey.Google Scholar
  46. Lazaridis, I., Nadel, D., Rollefson, G., Merrett, D. C., Rohland, N., Mallick, S., et al. (2016). Genomic insights into the origin of farming in the ancient Near East. Nature, 536(7617), 419.CrossRefGoogle Scholar
  47. Lipson, M., Szécsényi-Nagy, A., Mallick, S., Pósa, A., Stégmár, B., Keerl, V., et al. (2017). Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature, 551, 368.CrossRefGoogle Scholar
  48. Maher, L. A., Richter, T., & Stock, J. T. (2012). The Pre-Natufian Epipaleolithic: Long-term behavioral trends in the Levant. Evolutionary Anthropology: Issues, News, and Reviews, 21(2), 69–81.CrossRefGoogle Scholar
  49. Mamedov, A. V. (1997). The Late Pleistocene–Holocene history of the Caspian Sea. Quaternary International, 41(42), 161–166.CrossRefGoogle Scholar
  50. Marshall, J. L. (2012). Missing links: Demic diffusion and the development of agriculture on the Central Iranian Plateau. Durham University e-Theses: http://etheses.dur.ac.uk/3547/. Accessed 2015.
  51. Mashkour, M. (2004). A preliminary study of faunal remains from Komishan Cave in Mazandaran. Gozareshhai-i Bastanshenasi, 2, 16.Google Scholar
  52. Mashkour, M., Chahoud, J., & Mahforouzi, A. (2010). Faunal remains from the Epipaleolithic site of Komishan Cave and its dating: Preliminary results. Iranian Archaeology, 1, 32–37.Google Scholar
  53. Masuda, S. (1974). Excavations at Tappeh Sang-e Caxmaq. In Proceedings of the 2nd Annual Symposium on Archaeological Research in Iran (pp. 23–33). Tehran: Iranian Center for Archaeological Research.Google Scholar
  54. Masuda, S., Ikeda, A. T., Minami, M., & Tsuneki, A. (2013). Tappeh Sange Chakhmaq: Investigation of a Neolithic site in the northeastern Iran. In H. Fazeli Nashi (Ed.), The Neolithisation of Iran (p. 201). Oxford: Oxbow.CrossRefGoogle Scholar
  55. Matthews, R., Mohammadifar, Y., Matthews, W., & Motarjem, A. (2010). Investigating the Early Neolithic of western Iran: The Central Zagros Archaeological Project (CZAP). Antiquity, 84(323), 1–3.Google Scholar
  56. McBurney, C. B. (1968). The cave of Ali Tappeh and the Epi-Palaeolithic in N.E. Iran. Proceedings of the Prehistoric Society, 12, 385–413.Google Scholar
  57. Mellaart, J. (1975). The Neolithic of the Near East. New York: Charles Scribner’s Sons.Google Scholar
  58. Morrell, P. L., & Clegg, M. T. (2007). Genetic evidence for a second domestication of barley (Hordeum vulgare) east of the Fertile Crescent. Proceedings of the National Academy of Sciences, 104(9), 3289–3294.CrossRefGoogle Scholar
  59. Mzid, R., Chibani, F., Ayed, R. B., Hanana, M., Breidi, J., Kabalan, R., et al. (2016). Genetic diversity in barley landraces (Hordeum vulgare L. subsp. vulgare) originated from Crescent Fertile region as detected by seed storage proteins. Journal of Genetics, 95(3), 733–739.CrossRefGoogle Scholar
  60. Naderi, S., Rezaei, H. R., Pompanon, F., Blum, M. G., Negrini, R., Naghash, H. R., et al. (2008). The goat domestication process inferred from large-scale mitochondrial DNA analysis of wild and domestic individuals. Proceedings of the National Academy of Sciences, 105(46), 17659–17664.CrossRefGoogle Scholar
  61. Naderi, S., Rezaei, H. R., Taberlet, P., Zundel, S., Rafat, S. A., Naghash, H. R., et al. (2007). Large-scale mitochondrial DNA analysis of the domestic goat reveals six haplogroups with high diversity. PLoS One, 2(10), e1012.CrossRefGoogle Scholar
  62. Nakamura, T. (2014). Radiocarbon dating of charcoal remains excavated from Tappeh Sang-e Chakhmaq. In The first farming village in northeast Iran and Turan: Tappeh Sang-e Chakhmaq and beyond, February 10–11, 2014 (program and abstracts) (pp. 9–12). Tsukuba: University of Tsukuba.Google Scholar
  63. Oberlander, T. M. (1968). The origin of Zagros defiles. In W. B. Fisher (Ed.), The Cambridge history of Iran. Volume 1: The land of Iran (pp. 195–211). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  64. Ollivier, V., Fontugne, M., & Lyonnet, B. (2015). Geomorphic response and 14C chronology of base-level changes induced by Late Quaternary Caspian Sea mobility (middle Kura Valley, Azerbaijan). Geomorphology, 230, 109–124.  https://doi.org/10.1016/j.geomorph.2014.11.010.CrossRefGoogle Scholar
  65. Olszewski, D. I. (2013). The Zarzian in the context of the Epipaleolithic Middle East. The International Journal of Humanities, 19(3), 1–20.Google Scholar
  66. Olszewski, D. I., & Dibble, H. L. (1994). The Zagros Aurignacian. Current Anthropology, 35(1), 68–75.CrossRefGoogle Scholar
  67. Otte, M., Biglari, F., Flas, D., Shidrang, S., Zwyns, N., Mashkour, M., et al. (2007). The Aurignacian in the Zagros region: New research at Yafteh cave, Lorestan, Iran. Antiquity, 81(311), 82–96.CrossRefGoogle Scholar
  68. Otte, M., & Noiret, P. (2001). Le Mésolithique du Bassin Pannonien et la formation du Rubané. L’Anthropologie, 105, 409–419.CrossRefGoogle Scholar
  69. Peters, J., von den Driesch, A., Helmer, D. & Sañá Seguí, M. (1999). Early animal husbandry in the Northern Levant. Paléorient, 25(2), 27–48.CrossRefGoogle Scholar
  70. Riehl, S., Benz, M., Conard, N. J., Darabi, H., Deckers, K., Nashli, H. F., et al. (2012). Plant use in three pre-pottery Neolithic sites of the northern and eastern Fertile Crescent: A preliminary report. Vegetation History and Archaeobotany, 21(2), 95–106.CrossRefGoogle Scholar
  71. Riehl, S., Zeidi, M., & Conard, N. J. (2013). Emergence of agriculture in the foothills of the Zagros Mountains of Iran. Science, 341(6141), 65–67.CrossRefGoogle Scholar
  72. Rigaud, S., d’Errico, F., & Vanhaeren, M. (2015). Ornaments reveal resistance of north European cultures to the spread of farming. PLoS ONE, 10, e0121166.  https://doi.org/10.1371/journal.pone.0121166.CrossRefGoogle Scholar
  73. Rigaud, S., Manen, C., & García-Martínez de Lagrán, I. (2018). Symbols in motion: Flexible cultural boundaries and the fast spread of the Neolithic in the western Mediterranean. PLoS ONE, 13, e0196488.  https://doi.org/10.1371/journal.pone.0196488.CrossRefGoogle Scholar
  74. Rindos, D. (1984). The origins of agriculture: An evolutionary perspective. Cambridge, MA: Academic Press.Google Scholar
  75. Rose, J. (2010). New light on human prehistory in the Arabo-Persian Gulf Oasis. Current Anthropology, 51(6), 849–883.CrossRefGoogle Scholar
  76. Roustaei, K. (2012). Archaeological survey of the Šahroud area, northeast Iran: A landscape approach. Archäologische Mitteilungen aus Iran und Turan, 44, 191–219.Google Scholar
  77. Roustaei, K. (2016). An emerging picture of the Neolithic of northeast Iran. Iranica Antiqua, 51, 21–56.Google Scholar
  78. Roustaei, K., Mashkour, M., & Tengberg, M. (2015). Tappeh Sang-e Chakhmaq and the beginning of the Neolithic in north-east Iran. Antiquity, 89(345), 573–595.CrossRefGoogle Scholar
  79. Rowley-Conwy, P., & Layton, R. (2011). Foraging and farming as niche construction: Stable and unstable adaptations. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 849–862.CrossRefGoogle Scholar
  80. Shea, J. J. (2013). Stone tools in the Paleolithic and Neolithic Near East. New York: Cambridge University Press.CrossRefGoogle Scholar
  81. Shidrang, S. (2009). A typo-technological study of an Upper Paleolithic collection from Sefid-Ab, central Iran. In M. Otte, F. Biglari, & J. Jaubert (Eds.), Iran Palaeolithic/Le paléolithique d’Iran. Proceedings of the XV World Congress UISPP 28 (Lisbon, 49 September 2006), session C15. British Archaeological Reports International Series 1968 (pp. 47–56). Oxford: Archaeopress.Google Scholar
  82. Stevens, L. R., Djamali, M., Andrieu-Ponel, V., & de Beaulieu, J. L. (2012). Hydroclimatic variations over the last two glacial/interglacial cycles at Lake Urmia, Iran. Journal of Paleolimnology, 47(4), 645–660.CrossRefGoogle Scholar
  83. Stiner, M. (2001). Thirty years on the ‘Broad Spectrum Revolution’ and Paleolithic demography. Proceedings of the National Academy of Sciences, 98(13), 6993–6996.CrossRefGoogle Scholar
  84. Thornton, C. (2010). Sang-e Chakhmaq. Encyclopedia Iranica. http://www.iranicaonline.org. Accessed 2013.
  85. Vahdati Nasab, H., Berillon, G., Jamet, G., Hashemi, M., Jayez, M., Khaksar, S., et al. (2019). The open-air Paleolithic site of Mirak, northern edge of the Iranian Central Desert (Semnan, Iran): Evidence of repeated human occupations during the late Pleistocene. Comptes Rendus Palevol, 18(4), 465–478.CrossRefGoogle Scholar
  86. Vahdati Nasab, H., & Clark, G. A. (2014). The upper paleolithic of the Iranian central desert: The Delazian sites, Semnan Province—A case study. Archäologische Mitteilungen aus Iran und Turan (AMIT), 46, 1–21.Google Scholar
  87. Vahdati Nasab, H., Clark, G. A., & Torkamandi, S. (2013). Late Pleistocene dispersal corridors across the Iranian Plateau: A case study from Mirak, a Middle Paleolithic site on the northern edge of the Iranian Central Desert (Dasht-e Kavir). Quaternary International, 300, 267–281.CrossRefGoogle Scholar
  88. Vahdati Nasab, H., & Hashemi, M. (2016). Playas and Middle Paleolithic settlement of the Iranian Central Desert: The discovery of the Chah-e Jam Middle Paleolithic site. Quaternary International, 408, 140–152.CrossRefGoogle Scholar
  89. Vahdati Nasab, H., Jayez, M., Nobari, A. H., Nadooshan, F. K., Ilkhani, H., & Mahfroozi, A. (2011). Komishan Cave, Mazandaran, Iran: An Epipalaeolithic and later site on the southern Caspian Sea. Antiquity, 85, 328.Google Scholar
  90. Vlaminck, S., Kehl, M., Rolf, C., Franz, S. O., Lauer, T., Lehndorff, E., et al. (2018). Late Pleistocene dust dynamics and pedogenesis in southern Eurasia: Detailed insights from the loess profile Toshan (NE Iran). Quaternary Science Reviews, 180, 75–95.CrossRefGoogle Scholar
  91. Weninger, B., Alram-Stern, E., Bauer, E., Clare, L., Danzeglocke, U., Jöris, O., et al. (2006). Climate forcing due to the 8200 cal yr BP event observed at Early Neolithic sites in the eastern Mediterranean. Quaternary Research, 66, 401–420.CrossRefGoogle Scholar
  92. Wright, K. I. (2014). Domestication and inequality? Households, corporate groups and food processing tools at Neolithic Çatalhöyük. Journal of Anthropological Archaeology, 33, 1–33.  https://doi.org/10.1016/j.jaa.2013.09.007.CrossRefGoogle Scholar
  93. Yanina, T. A. (2012). Correlation of the Late Pleistocene paleogeographical events of the Caspian Sea and Russian Plain. Quaternary International, 271, 120–129.CrossRefGoogle Scholar
  94. Zeder, M. A. (2008). Domestication and early agriculture in the Mediterranean Basin: Origins, diffusion, and impact. Proceedings of the National Academy of Sciences, 105(33), 11597–11604.CrossRefGoogle Scholar
  95. Zeder, M. (2011). The origins of agriculture in the near east. Current Anthropology, 52(Supplement 4), S221–S235.CrossRefGoogle Scholar
  96. Zeder, M. (2012). Pathways to animal domestication. In P. Gepts, T. Famula, R. Bettinger, S. Brush, A. Damania, P. McGuire, et al. (Eds.), Biodiversity in agriculture: Domestication evolution and sustainability (pp. 227–259). Cambridge: Cambridge University Press.  https://doi.org/10.1017/cbo9781139019514.013.CrossRefGoogle Scholar
  97. Zeder, M. A., & Hesse, B. (2000). The initial domestication of goats (Capra hircus) in the Zagros Mountains 10,000 years ago. Science, 287(5461), 2254–2257.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ArcheologyTarbiat Modares UniversityTehranIran
  2. 2.Department of ArcheologyUniversity of TehranTehranIran
  3. 3.UMR 5199 – PACEA, CNRSUniversité de BordeauxPessacFrance

Personalised recommendations