Journal of World Prehistory

, Volume 28, Issue 2, pp 69–112 | Cite as

The Sri Lankan ‘Microlithic’ Tradition c. 38,000 to 3,000 Years Ago: Tropical Technologies and Adaptations of Homo sapiens at the Southern Edge of Asia

  • Patrick Roberts
  • Nicole Boivin
  • Michael Petraglia
Article

Abstract

The prehistoric archaeology of Sri Lanka is of considerable significance for investigations of the evolution, dispersal and adaptation of our species within a variety of environments beyond Africa during the Late Pleistocene. In particular, the archaeological and fossil sequences of Sri Lanka’s ‘Microlithic tradition’, c. 38,000–3,000 cal. years BP, have yielded some of the earliest Homo sapiens fossils, microlithic technologies, osseous toolkits, and evidence for symbolic ornamentation and long-distance contacts anywhere in South Asia. The further association of the Late Pleistocene portion of these records with the tropical rainforest of Sri Lanka’s Wet Zone also makes Sri Lanka of particular interest for debates regarding the viability of tropical rainforest for early human foraging and specialization. Yet beyond mentions of its fossil evidence, the archaeology and palaeoenvironmental contexts of the ‘Microlithic tradition’ have remained little-explored in the international literature. Here we present the first critical review of this period of Sri Lankan prehistory, examining its local chronologies, the spatial and diachronic patterns of its material cultural sequence, and relating its technological and fossil record to broader international archaeological, anthropological and genetic debates.

Keywords

South Asia Sri Lanka Rainforest archaeology Late Pleistocene Microlithic 

Supplementary material

10963_2015_9085_MOESM1_ESM.doc (144 kb)
Supplementary material 1 (DOC 145 kb)

References

  1. Adams, J. M., & Faure, H. (Eds.). (1997). Q.E.N. members. Review and atlas of palaeovegetation: Preliminary land ecosystem maps of the world since the Last Glacial Maximum. Oak Ridge: Oak Ridge National Laboratory. http://www.esd.ornl.gov/projects/qen/adams1.html
  2. Agrawal, D. P. (1985). The archaeology of India. Scandinavian Institute of Asian Studies. Monograph Series 46. London: Curzon Press.Google Scholar
  3. Allchin, B. (1958). The late stone age of Ceylon. Journal of the Royal Anthropological Institute of Great Britain and Ireland, 88(2), 179–201.Google Scholar
  4. Allchin, B. (1985). Some observations on the stone industries of the Early Holocene in Pakistan and Western India. In V. N. Misra & P. Bellwood (Eds.), Recent advances in Indo-Pacific prehistory: Proceedings of the international symposium held at Poona, December 19–21 1978 (pp. 129–136). New Delhi: Oxford University Press.Google Scholar
  5. Allchin, B., Goudie, A., & Hedge, K. (1978). The prehistory and archaeology of the Great Indian Desert. London: Academic Press.Google Scholar
  6. Ambrose, S. H. (1998). Chronology of the Later Stone Age and food production in East Africa. Journal of Archaeological Science, 25, 377–392.Google Scholar
  7. Ambrose, S. H. (2002). Small things remembered: Origins of early microlithic industries in sub-Saharan Africa. In R. G. Elston & S. L. Kuhn (Eds.), Thinking small: Global perspectives on microlithization. Archaeological Papers, 12 (pp. 9–30). Arlington: American Anthropological Association.Google Scholar
  8. Ashton, M. S., Gunatileke, C. V. S., Singhakumara, B. M. P., & Gunatileke, I. A. U. N. (2001). Restoration pathways for rain forest in southwest Sri Lanka: A review of concepts and models. Forest Ecology and Management, 154, 409–430.Google Scholar
  9. Ashton, P. S., & Gunatilleke, C. V. S. (1987). New light on the plant geography of Ceylon I: Historical plant geography. Journal of Biogeography, 14(3), 249–285.Google Scholar
  10. Austin, C. C., Das, I., & De Silva, A. (2004). Higher-level molecular phylogenetic relationships of the endemic genus Lankascincus from Sri Lanka based on nuclear DNA sequences. Lyriocephalus, 5(1&2), 11–22.Google Scholar
  11. Bae, C. J., Wang, W., Zhao, J., Huang, S., Tian, F., & Shen, G. (2014). Modern human teeth from Late Pleistocene Luna Cave (Guangxi, China). Quaternary International, 354, 169–183.Google Scholar
  12. Bahuguna, A., Nayak, S., & Deshmukh, B. (2003). IRS views the Adams Bridge (bridging India and Sri Lanka). Journal of the Indian Society of Remote Sensing, 31(4), 237–239.Google Scholar
  13. Bailey, G. N. (1975). The role of molluscs in coastal economies: The results of midden analysis in Australia. Journal of Archaeological Science, 2, 45–62.Google Scholar
  14. Bailey, G. N. (2004). World prehistory from the margins: The role of coastlines in human evolution. Journal of Interdisciplinary Studies in History and Archaeology, 1(1), 39–50.Google Scholar
  15. Bailey, G. (2009). The Red Sea, coastal landscapes, and hominin dispersals. In M. D. Petraglia & J. I. Rose (Eds.), The evolution of human populations in Arabia. Vertebrate palaeobiology and palaeoanthropology (pp. 15–37). Dordrecht: Springer.Google Scholar
  16. Bailey, R., Head, G., Jenike, M., Owen, B., Rechtman, R., & Zechenter, E. (1989). Hunting and gathering in tropical rain forest: Is it possible? American Anthropologist, 91, 59–82.Google Scholar
  17. Balée, W. (1994). Footprints of the forest: Ka’apar ethnobotany—The historical ecology of plant utilization by an Amazonian People. New York: Columbia University Press.Google Scholar
  18. Bambaradeniya, C. N. B. (Ed.). (2006). The fauna of Sri Lanka: Status of taxonomy, research and conservation. Colombo: World Conservation Union (IUCN)/Government of Sri Lanka.Google Scholar
  19. Barker, G., Barton, H., Bird, M., Daly, P., Datan, I., Dykes, A., et al. (2007). The ‘human evolution’ in lowland tropical Southeast Asia: The antiquity and behaviour of anatomically modern humans at Niah Cave (Sarawak, Borneo). Journal of Human Evolution, 52, 243–261.Google Scholar
  20. Basak, B., Srivastava, P., Dasgupta, S., Kumar, A., & Rajaguru, S. N. (2014). Earliest dates and implications of Microlithic industries of Late Pleistocene from Mahadebbera and Kana, Purulia district, West Bengal. Current Science, 107(7), 1167–1171.Google Scholar
  21. Bateman, M. D. (2008). Luminescence dating of periglacial sediments and structures: A review. Boreas, 37(4), 574–588.Google Scholar
  22. Begley, V., Lukacs, J. R., & Kennedy, K. A. R. (1981). Excavations of Iron Age burials at Pomparippu. Ancient Ceylon, 4, 51–132.Google Scholar
  23. Bellwood, P. (1993). Cultural and biological differentiation in Peninsular Malaysia: The last 10,000 years. Asian Perspectives, 32, 37–60.Google Scholar
  24. Bezerra, F. H. R., Vita-Finzi, C., & Filho, F. P. L. (2000). The use of marine shells for radiocarbon dating of coastal deposits. Revista Brasileira de Geosciências, 30(1), 211–213.Google Scholar
  25. Bird, M. I., Ayliffe, L. K., Fifield, L. K., Turney, C. S. M., Cresswell, R. G., Barrows, T. T., & David, B. (1999). Radiocarbon dating of ‘old’ charcoal using a west oxidation, stepped-combustion procedure. Radiocarbon, 41(2), 127–140.Google Scholar
  26. Blench, R. (2008). Re-evaluating the linguistic prehistory of South Asia. Kyoto: Indus Project, Research Institute for Humanity and Nature.Google Scholar
  27. Boivin, N., Fuller, D. Q., Dennell, R., Allaby, R., & Petraglia, M. D. (2013). Human dispersal across diverse environments of Asia during the Upper Pleistocene. Quaternary International, 300, 32–47.Google Scholar
  28. Bonnefille, R., Anupama, K., Barboni, D., Pascal, J., Prasad, S., & Sutra, J. P. (1999). Modern pollen spectra from tropical South India and Sri Lanka: Altitudinal distribution. Journal of Biogeography, 26(6), 1255–1280.Google Scholar
  29. Bossuyt, F., Meegaskumbura, M., Beenaerts, N., Gower, D. J., Pethiyagoda, R., Roelants, K., et al. (2004). Local endemism within the Western Ghats-Sri Lanka biodiversity hotspot. Science, 306, 479–481.Google Scholar
  30. Bowler, J. M., Johnston, H., Olley, J. M., Prescott, J. R., Roberts, R. G., Shawcross, W., & Spooner, N. A. (2003). New ages for human occupation and climatic change at Lake Mungo, Australia. Nature, 421, 837–840.Google Scholar
  31. Brock, F., & Higham, T. F. G. (2009). AMS Radiocarbon dating of Paleolithic-aged charcoal from Europe and the Mediterranean Rim using ABOx-SC. Radiocarbon, 51(2), 839–846.Google Scholar
  32. Bronk Ramsey, C. (2009). Bayesian analysis of radiocarbon dates. Radiocarbon, 51(1), 337–360.Google Scholar
  33. Brook, B. W., & Bowman, D. M. J. S. (2002). Explaining the Pleistocene megafaunal extinctions: Models, chronologies, and assumptions. Proceedings of the National Academy of Sciences of the United States of America, 99(23), 14624–14627.Google Scholar
  34. Brown, K. S., Marean, C. W., Herries, A. I. R., Jacobs, Z., Tribolo, C., Braun, D., et al. (2009). Fire as an engineering tool of early modern humans. Science, 325, 859–862.Google Scholar
  35. Bulbeck, F. (2008). An integrated perspective on the Austronesian diaspora: The switch from cereal agriculture to maritime foraging in the colonisation of Island Southeast Asia. Australian Archaeology, 67, 31–51.Google Scholar
  36. Caley, T., Malaizé, B., Revel, M., Ducassou, E., Wainer, K., Ibrahim, M., et al. (2011). Orbital timing of the Indian, East Asian and African boreal monsoons and the concept of a ‘global monsoon’. Quaternary Science Reviews, 30(25–26), 3705–3715.Google Scholar
  37. Carneiro, R. L. (1988). Indians of the Amazonian forest. In J. S. Denslow & C. Padoch (Eds.), People of the tropical rainforest. Berkeley: University of California Press.Google Scholar
  38. Carswell, J. (1996). The excavation at Mantai. In J. Reade (Ed.), The Indian Ocean in antiquity (pp. 501–515). Oxford: Routledge.Google Scholar
  39. Chakrabarti, D. P. (1999). India: An archaeological history. Palaeolithic Beginnings to Early Historic Foundations. New Delhi: Oxford University Press.Google Scholar
  40. Chaubey, G. (2014). Language isolates and their genetic identity: A commentary on mitochondrial DNA history of Sri Lankan ethnic people: Their relations within the island and with the Indian subcontinental populations. Journal of Human Genetics, 59, 61–63.Google Scholar
  41. Chauhan, P. R. (2008). Large mammal fossil occurrences and associated archaeological evidence in Pleistocene contexts of peninsular India and Sri Lanka. Quaternary International, 192, 20–42.Google Scholar
  42. Clarkson, C., Petraglia, M., Korisettar, R., Haslam, M., Boivin, N., Crowther, A., et al. (2009). The oldest and longest enduring microlithic sequence in India: 35,000 years of modern human occupation and change at the Jwalapuram Locality 9 rockshelter. Antiquity, 83, 326–348.Google Scholar
  43. Colinvaux, P. A., & Bush, M. B. (1991). The rain-forest ecosystem as a resource for hunting and gathering. American Anthropologist, 93(1), 153–160.Google Scholar
  44. Cooray, P. G. (1948). Effective rainfall and moisture zones. Bulletin of the Ceylon Geographical Society, 3, 11–21.Google Scholar
  45. Cornelissen, E. (1996). Shum Laka rock shelter (Northwestern Cameroon): Pleistocene deposits. In G. Pwiti, & R. Soper (Eds.), Aspects of African archaeology. Papers from the 10th congress of the Panafrican association for prehistory and related studies (pp. 257–264). Harare: University of Zimbabwe.Google Scholar
  46. Cornelissen, E. (2002). Human responses to changing environments in Central Africa between 40,000 and 12,000 BP. Journal of World Prehistory, 16(3), 197–235.Google Scholar
  47. Crowley, B. E. (2010). A refined chronology of prehistoric Madagascar and the demise of the megafauna. Quaternary Science Reviews, 29, 2591–2603.Google Scholar
  48. De Silva, R. I. (2006). Taxonomy and status of the sharks and rays of Sri Lanka. In C. N. B. Bambaradeniya (Ed.), The fauna of Sri Lanka: Status of taxonomy, research and conservation (pp. 294–301). Colombo: World Conservation Union (IUCN)/Government of Sri Lanka.Google Scholar
  49. Deplazes, G., Lückge, A., Stuut, J.-B. W., Pätzold, J., Kuhlmann, H., Husson, D., et al. (2014). Weakening and strengthening of the Indian monsoon during Heinrich events and Dansgaard-Oeschger oscillations. Paleoceanography, 29, 99–114.Google Scholar
  50. Deraniyagala, P. E. P. (1943). Some aspects of the prehistory of Ceylon. Part 1. Spolia Zeylanica, 23, 93–115.Google Scholar
  51. Deraniyagala, P. E. P. (1954). Stone age of Ceylon. Journal of the Royal Asiatic Society of Ceylon, 3, 113–124.Google Scholar
  52. Deraniyagala, P. E. P. (1955). Some aspects of the prehistory of Ceylon. Part 4: Some skeletal remains, implements and food of Balangoda Man. Spolia Zeylanica, 27, 295–303.Google Scholar
  53. Deraniyagala, P. E. P. (1956). Some aspects of the prehistory of Ceylon. Part 5: The Balangoda Culture. Spolia Zeylanica, 28(1), 117–120.Google Scholar
  54. Deraniyagala, P. E. P. (1958). The Pleistocene of Ceylon. Colombo: Sri Lanka National Museums.Google Scholar
  55. Deraniyagala, P. E. P. (1963). An open-air habitation site of Homo sapiens balangodensis. Part 3. Spolia Zeylanica, 30, 5–25.Google Scholar
  56. Deraniyagala, S. U. (1972). The citadel of Anuradhapura in 1969: Excavations in the Gedige area. Ancient Ceylon, 2, 48–169.Google Scholar
  57. Deraniyagala, S. U. (1992). The prehistory of Sri Lanka: An ecological perspective (2nd ed.). Colombo: Department of Archaeological Survey.Google Scholar
  58. Deraniyagala, S. U. (1998). Pre- and protohistoric settlement in Sri Lanka. In XIII UISP congress proceedings (Vol. 5, pp. 277–285). Forli: A.B.A.C.O. s.r.l.Google Scholar
  59. Deraniyagala, S. U. (2007). The prehistory and protohistory of Sri Lanka. In P. L. Prematilleke, S. Bandaranayake, S. U. Deraniyagala, & R. Silva (Eds.), The art and archaeology of Sri Lanka, 1 (pp. 1–96). Colombo: Central Cultural Fund.Google Scholar
  60. Deraniyagala, S. U., & Kennedy, K. A. R. (1972). Bellan Bandi Palassa 1970: A Mesolithic burial site in Ceylon. Ancient Ceylon, 2, 18–47.Google Scholar
  61. Dijkmans, J. W. A., & Wintle, A. G. (1991). Methodological problems in thermoluminescence dating of Weichselian coversand and late Holocene drift sand from the Lutterzand area. E. Netherlands. Geologie en Mijnbouw, 70, 21–33.Google Scholar
  62. Dittus, W. P. J. (1977). The ecology of a semi-evergreen forest community in Sri Lanka. Biotropica, 9, 268–286.Google Scholar
  63. Douka, K., Hedges, R. E. M., & Higham, T. F. G. (2010). Improved AMS 14C dating of shell carbonates using high-precision X-ray diffraction (XRD) and a novel density separation protocol (CarDS). Radiocarbon, 52(2–3), 735–751.Google Scholar
  64. Eisenberg, J. F., & Lockhart, M. (1972). An ecological reconnaissance of Wilpattu National Park, Ceylon. Smithsonian Contributions to Zoology, 101, 1–119.Google Scholar
  65. Ellen, R. F. (1988). Foraging, starch extraction and the sedentary lifestyle in the lowland rainforest of central Seram. In J. Woodburn, T. Ingold, & D. Riches (Eds.), History, evolution and social change in hunting and gathering societies (pp. 117–134). London: Berg.Google Scholar
  66. Elston, R. H., & Kuhn, S. L. (Eds.). (2002). Thinking small: Global perspectives microlithization. Archaeological Papers, 12. Arlington: American Anthropological Association.Google Scholar
  67. Endicott, P. (2013). Introduction: Revisiting the ‘Negrito’ hypothesis: A transdisciplinary approach to human prehistory in Southeast Asia. Human Biology, 85(1l/3), 7–20.Google Scholar
  68. Erdelen, W. (1988). Forest ecosystems and nature conservation in Sri Lanka. Biological Conservation, 43, 115–135.Google Scholar
  69. Erdelen, W., & Preu, C. (1990). Quaternary coastal and vegetation dynamics in the Palk Strait region, South Asia: The evidence and hypotheses. In J. B. Thornes (Ed.), Vegetation and erosion (pp. 491–520). Chichester: Wiley.Google Scholar
  70. Erlandson, J. (2001). The archaeology of aquatic adaptations: Paradigms for a new millennium. Journal of Archaeological Research, 9(4), 287–350.Google Scholar
  71. Erlandson, J. M., Graham, M. H., Bourque, B. J., Corbett, D., Estes, J. A., & Steneck, R. S. (2007). The kelp highway hypothesis: Marine ecology, the coastal migration theory, and the peopling of the Americas. Journal of Island and Coastal Archaeology, 2(2), 161–174.Google Scholar
  72. Field, J. S., Petraglia, M. D., & Lahr, M. M. (2007). The southern dispersal hypothesis and the South Asian archaeological record: Examination of dispersal routes through GIS analysis. Journal of Anthropological Archaeology, 26, 88–108.Google Scholar
  73. Fortier, J. (2009). The kings of the forest: The cultural resilience of Himalayan hunter-gatherers. Honolulu: University of Hawaii Press.Google Scholar
  74. Fuller, D. Q. (2003). Indus and non-Indus agricultural traditions: Local developments and crop adoptions on the Indian peninsula. In S. Weber & W. Belcher (Eds.), Indus ethnobiology: New perspectives from the field (pp. 343–396). Lanham, MD: Lexington Books.Google Scholar
  75. Fuller, D. Q. (2007). Contrasting patterns in crop domestication and domestication rates: Recent archaeobotanical insights from the old world. Annals of Botany, 100(5), 903–924.Google Scholar
  76. Fuller, D. (2009). Silence before sedentism and the advent of cash-crops: A revised summary of early agriculture in South Asia from plant domestication to the development of political economies (with an excursus on the problem of semantic shift among millets and rice). In T. Osada (Ed.), Linguistics, archaeology and the human past (pp. 147–187). New Delhi: Manohar.Google Scholar
  77. Ganga Ram, G. (Ed.). (1992). Encyclopedia of the Hindu world, A–Aj (p. 142). New Delhi: South Asia Books.Google Scholar
  78. Gaussen, H., Legris, P., Viart, M., & Labroue, L. (1968). Explanatory notes on the vegetation map of Ceylon. Colombo: Government Press.Google Scholar
  79. Gliganic, L. A., Jacobs, Z., Roberts, R. G., Domínguez-Rodrigo, M., & Mabulla, A. Z. (2012). New ages for Middle and Later Stone Age deposits at Mumba rockshelter, Tanzania: Optically stimulated luminescence dating of quartz and feldspar grains. Journal of Human Evolution, 62, 533–547.Google Scholar
  80. Golson, J. (1977). No room at the top: Agricultural intensification in the New Guinea Highlands. In J. Allen, J. Golson, & R. Jones (Eds.), Sunda and Sahul: Prehistoric studies in southeast Asia, Melanesia and Australia (pp. 601–638). London: Academic Press.Google Scholar
  81. Gosden, C. (1995). Arboriculture and agriculture in coastal Papua New Guinea. In J. Allen, & J. F. O’Connell (Eds.), Transitions: Pleistocene to Holocene in Australia and Papua New Guinea. Antiquity, 69, Special Number 265 (pp. 807–817).Google Scholar
  82. Gosden, C. (2010). When humans arrived in the New Guinea Highlands. Science, 330, 41–42.Google Scholar
  83. Gosden, C., & Robertson, N. (1991). Models for Matenkupkum: Interpreting a late Pleistocene site from Southern New Ireland, Papua New Guinea. In J. Allen, & C. Gosden (Eds). Report of the Lapita Homeland Project. Occasional Papers in Prehistory 20 (pp. 20–91). Canberra: Department of Prehistory, Research School of Pacific Studies, Australian National University.Google Scholar
  84. Graham, A. (2013). Mesolithic activity on the ancient shore line. In J. Carswell, S. Deraniyagala, & A. Graham (Eds.), Mantai: City by the sea (pp. 111–130). Aichwald: Linden Soft Verlag.Google Scholar
  85. Groucutt, H. S., Scerri, E. M. L., Lewis, L., Clark-Balzan, L., Blinkhorn, J., Jennings, R. P., et al. (2015). Stone tool assemblages and models for the dispersals of Homo sapiens out of Africa. Quaternary International. doi:10.1016/j.quaint.2015.01.039.
  86. Gunatilleke, C. V. S., & Gunatilleke, I. A. U. N. (1985). Phytosociology of Sinharaja: A contribution to rain forest conservation in Sri Lanka. Biological Conservation, 31, 21–40.Google Scholar
  87. Gunatilleke, I. A. U. N., & Gunatilleke, C. V. S. (1991). Distribution of floristic richness and its conservation in Sri Lanka. Conservation Biology, 4(1), 21–31.Google Scholar
  88. Gunatilleke, I. A. U. N., Gunatilleke, C. V. S., & Dilhan, M. A. A. B. (2005). Plant biogeography and conservation of the southwestern hill forests of Sri Lanka. The Raffles Bulletin of Zoology, Supplement, 12, 9–22.Google Scholar
  89. Gunawardene, N. R., Daniels, D. A., Gunatilleke, I. A. U. N., Gunatilleke, C. V. S., Karunakaran, P. V., Nayak, G. K., et al. (2007). A brief overview of the Western Ghats-Sri Lanka biodiversity hotspot. Current Science, 93(11), 1567–1572.Google Scholar
  90. Hartley, C. (1913). The stone implements of Ceylon. Spolia Zeylanica, 9, 117–123.Google Scholar
  91. Hartley, C. (1914). On the occurrence of pigmy implements in Ceylon. Spolia Zeylanica, 10, 54–67.Google Scholar
  92. Headland, T. N., & Bailey, R. C. (1991). Introduction: Have hunter-gatherers ever lived in tropical rain forest independently of agriculture? Human Ecology, 19(2), 115–122.Google Scholar
  93. Henshilwood, C. S., Sealy, J. C., Yates, R., Cruz-Uribe, K., Goldberg, P., Grine, F., et al. (2001). Blombos Cave, southern Cape, South Africa: Preliminary report on the 1992–1999 excavations of the Middle Stone Age levels. Journal of Archaeological Science, 28(4), 421–448.Google Scholar
  94. Hicks, D., Petraglia, M. D., & Boivin, N. (2013). India and Sri Lanka. In D. Hicks & A. Stevenson (Eds.), World archaeology at the Pitt Rivers Museum: A characterization (pp. 482–503). London: Archaeopress.Google Scholar
  95. Higham, T. F. G. (2011). European Middle and Upper Palaeolithic radiocarbon dates are often older than they look: Problems with previous dates and some remedies. Antiquity, 85, 235–249.Google Scholar
  96. Higham, T. F. G., Barton, H., Turney, C. S. M., Barker, G., Bronk Ramsey, C., & Brock, F. (2009). Radiocarbon dating of charcoal from tropical sequences: Results from the Niah Great Cave, Sarawak, and their broader implications. Journal of Quaternary Science, 24(2), 189–197.Google Scholar
  97. Holt, B. M. (2003). Mobility in Upper Paleolithic and Mesolithic Europe: Evidence from the lower limb. American Journal of Physical Anthropology, 122(3), 200–215.Google Scholar
  98. Hutterer, K. L. (1983). The natural and cultural history of Southeast Asian agriculture. Anthropos, 78, 169–212.Google Scholar
  99. Ichikawa, M. (1992). Traditional use of tropical rainforest by the Mbuti hunter-gatherers in Africa. In N. Itoigawa, Y. Sugiyama, G. P. Sackett, & R. K. R. Thompson (Eds.), Topics in primatology: Behaviour, ecology and conservation (pp. 305–317). Tokyo: University of Tokyo Press.Google Scholar
  100. Igreja, M., & Porraz, G. (2013). Functional insights into the innovative Early Howieson’s Poort technology at Diepkloof Rock Shelter (Western Cape, South Africa). Journal of Archaeological Science, 40(9), 3475–3491.Google Scholar
  101. Ilangakoon, A. D. (2006). Taxonomy and current status of marine mammals in Sri Lanka. In C. N. B. Bambaradeniya (Ed.), The fauna of Sri Lanka: Status of taxonomy, research and conservation (pp. 302–308). Colombo: World Conservation Union (IUCN)/Government of Sri Lanka.Google Scholar
  102. Illeperuma, R. J., Markalanda, D., Mountain, J. L., Ratnasooriya, W. D., Fernandopulle, N. D., & Bamshad, M. J. (2010a). Haplotype data for 12 Y-chromosome STR loci of Sri Lankans. Forensic Science International: Genetics, 4, e119–e120.Google Scholar
  103. Illeperuma, R. J., Markalanda, D. A., Ratnasooriya, W. D., & Fernandopulle, N. D. (2010b). Genetic variation at 11 autosomal STR loci in the aboriginal people, the Veddahs of Sri Lanka. Forensic Science International: Genetics, 4, 142.Google Scholar
  104. Illeperuma, R. J., Mohotti, S. N., De Sila, T. M., Fernandopulle, N. D., & Ratnasooriya, W. D. (2009). Genetic profile of 11 autosomal STR loci among the four major ethnic groups in Sri lanka. Forensic Science International: Genetics, 3, e105–e106.Google Scholar
  105. Inger, R. F., Shaffer, H. B., Koshy, M., & Bakde, R. (1984). A report on a collection of amphibians and reptiles from the Ponmudi, Kerala, South India. Part 2. Journal of Bombay Natural History Society, 81(3), 551–570.Google Scholar
  106. Jacobs, Z., Hayes, E. H., Roberts, R. G., Galbraith, R. F., & Henshilwood, C. S. (2013). An improved OSL chronology for the Still Bay layers at Blombos Cave, South Africa: Further tests of single-grain dating procedures and a re-evaluation of the timing of the Still Bay industry across southern Africa. Journal of Archaeological Science, 40, 579–594.Google Scholar
  107. Jacobs, Z., Roberts, R. G., Galbraith, R. F., Deacon, H. J., Grün, R., Mackay, A., et al. (2008). Ages for the Middle Stone Age of southern Africa: Implications for human behavior and dispersal. Science, 322, 733–735.Google Scholar
  108. James, H. V. A., & Petraglia, M. D. (2005). Modern human origins and the evolution of behavior in the later Pleistocene record of South Asia. Current Anthropology, 46, S3–S27.Google Scholar
  109. Katupotha, J. (1995). Evolution and geological significance of Holocene emerged shell beds on the southern coastal zone of Sri Lanka. Journal of Coastal Research, 11(4), 1042–1061.Google Scholar
  110. Kelaart, E. F. (1852). Prodromus faunae Zeylanicae: Being contributions to the zoology of Ceylon. Colombo: Observer Press.Google Scholar
  111. Kennedy, K. A. R. (1965). Human skeletal material from Ceylon, with an analysis of the Island’s prehistoric and contemporary populations. Bulletin of the British Museum of Natural History (Geology), 11, 135–213.Google Scholar
  112. Kennedy, K. A. R. (2000). God-apes and fossil men: Palaeoanthropology of South Asia. Ann Arbor: University of Michigan Press.Google Scholar
  113. Kennedy, K. A. R. (2013). To what extent were prehistoric Sri Lankans isolated from the Indian mainland? Biotic and archaeological considerations. In S. A. Abraham, P. Gullapalli, T. P. Raczek, & U. Z. Rizvi (Eds.), Connections and complexity: New approaches to the archaeology of South Asia (pp. 35–45). Walnut Creek: Left Coast Press.Google Scholar
  114. Kennedy, K. A. R., & Deraniyagala, S. U. (1989). Fossil remains of 28,000-year-old hominids from Sri Lanka. Current Anthropology, 30, 394–399.Google Scholar
  115. Kennedy, K. A. R., Deraniyagala, S. U., Roertgen, W. J., Chiment, H., & Disotell, T. (1987). Upper Pleistocene fossil hominids from Sri Lanka. American Journal of Physical Anthropology, 72, 441–461.Google Scholar
  116. Kingdon, J. (1993). Self-made man: And his undoing. London: Simon & Schuster.Google Scholar
  117. Koch, P. L., & Barnosky, A. D. (2006). Late Quaternary extinctions: State of the debate. Annual Review of Ecology Evolution and Systematics, 37, 215–250.Google Scholar
  118. Kotagama, S. W., & De Silva, R. I. (2006). The taxonomy and status of offshore birds (seabirds) of Sri Lanka. In C. N. B. Bambaradeniya (Ed.), The fauna of Sri Lanka: Status of taxonomy, research and conservation (pp. 288–293). Colombo: World Conservation Union (IUCN)/Government of Sri Lanka.Google Scholar
  119. Kourampas, N., Simpson, I. A., Perera, N., Deraniyagala, S. U., & Wijeyapala, W. H. (2009). Rockshelter sedimentation in a dynamic tropical landscape: Late Pleistocene–Early Holocene archaeological deposits in Kitulgala Beli-lena, southwestern Sri Lanka. Geoarchaeology: An International Journal, 24, 677–714.Google Scholar
  120. Krigbaum, J. (2005). Reconstructing human subsistence in the west mouth (Niah Cave) Sarawak burial series using stable isotopes of carbon. Asian Perspectives, 44, 73–89.Google Scholar
  121. Kulatilake, S. (2009). Early occupation of coastal Sri Lanka: Human remains form the Mini-athiliya shell midden. In A. R. Sankhyan (Ed.), Asian perspectives on human evolution (pp. 207–214). New Delhi: Serials.Google Scholar
  122. Kusimba, S. B. (2001). The early later stone age in East Africa: Excavations and lithic assemblages from Lukenya Hill. African Archaeological Review, 18(2), 77–123.Google Scholar
  123. Lahr, M. M., & Foley, R. (1994). Multiple dispersals and modern human origins. Evolutionary Anthropology, 3(2), 48–60.Google Scholar
  124. Levis, S., Foley, J. A., & Pollard, D. (1999). CO2, climate, and vegetation feedbacks at the Last Glacial Maximum. Journal of Geophysical Research: Atmospheres, 104, 31191–31198.Google Scholar
  125. Lewis, F. (1912). Flints, etc from a cave at Urumutta. Spolia Zeylanica, 8, 142–144.Google Scholar
  126. Lewis, L., Perera, N., & Petraglia, M. (2014). First technological comparison of Southern African Howieson’s Poort and South Asian microlithic industries: An exploration of inter-regional variability in microlithic assemblages. Quaternary International, 350, 7–25.Google Scholar
  127. Lombard, M., & Parsons, I. (2008). Blade and bladelet function and variability in risk management during the last 2000 years in the Northern Cape. South African Archaeological Bulletin, 63(187), 18–27.Google Scholar
  128. Lovis, W. A., Whallon, R., & Donahue, R. E. (2006). Introduction to Mesolithic mobility, exchange, and interaction: A special issue of the Journal of Anthropological Archaeology. Journal of Anthropological Archaeology, 25, 175–177.Google Scholar
  129. Lu, F. (2010). Patterns of indigenous resilience in the Amazon: A case study of Huaorani hunting in Ecuador. Journal of Ecological Anthropology, 14(1), 5–21.Google Scholar
  130. Lukacs, J. R. (1985). Tooth size variation in prehistoric India. American Anthropologist, 87(4), 811–825.Google Scholar
  131. Marean, C. W., Bar-Matthews, M., Benatchez, J., Fisher, E., Goldberg, P., Herries, A. I. R., et al. (2007). Early human use of marine resources and pigment in South Africa during the Middle Pleistocene. Nature, 449, 905–908.Google Scholar
  132. McBrearty, S., & Brooks, A. (2000). The revolution that wasn’t: A new interpretation of the origin of modern human behavior. Journal of Human Evolution, 39, 453–563.Google Scholar
  133. Meegaskumbura, M., Bossuyt, F., Pethiyagoda, R., Manamendra-Arachchi, K., Bahir, M., Milinkovitch, M. C., & Schneider, C. J. (2002). Sri Lanka: An amphibian hot spot. Science, 298(5592), 379.Google Scholar
  134. Mellars, P. (2005). The impossible coincidence: A single-species model for the origins of modern human behavior in Europe. Evolutionary Anthropology, 14, 12–17.Google Scholar
  135. Mellars, P. A., Goric, K. C., Carr, M., Soares, P. A., & Richards, M. B. (2013). Genetic and archaeological perspectives on the initial modern human colonization of Southern Asia. Proceedings of the National Academy of Sciences of the United States of America, 110(26), 10699–10704.Google Scholar
  136. Mercader, J. (2002a). Forest people: The role of African rainforests in human evolution and dispersal. Evolutionary Anthropology, 11, 117–124.Google Scholar
  137. Mercader, J. (Ed.). (2002b). Under the canopy: The archaeology of tropical rain forests. New Brunswick: Rutgers University Press.Google Scholar
  138. Miller, C. (1979). Lukenya Hill, GvJm46, excavation report. Nyame Akuma, 14, 31–34.Google Scholar
  139. Mishra, S., Chauhan, N., & Singhvi, A. K. (2013). Continuity of microblade technology in the Indian Subcontinent since 45 ka: Implications for the dispersal of modern humans. PLoS ONE, 8(7), e69280. doi:10.1371/journal.pone.0069280.Google Scholar
  140. Misra, V. N. (2002). The Mesolithic Age in India. In S. Settar & R. Korisettar (Eds.), Indian archaeology in retrospect, Vol. 1: Prehistory, Archaeology of South Asia (pp. 111–126). New Delhi: Manohar.Google Scholar
  141. Mithen, S. (1995). The Mesolithic age. In B. Cunliffe (Ed.), The Oxford illustrated prehistory of Europe (pp. 79–135). Oxford: Oxford University Press.Google Scholar
  142. Morrison, K. D. (2007). Foragers and forager-traders in South Asian worlds: Some thoughts from the last 10,000 years. In M. D. Petraglia & B. A. Allchin (Eds.), The evolution and history of human populations in South Asia, interdisciplinary studies in archaeology, biological anthropology, linguistics and genetics (pp. 321–340). Dordrecht: Springer.Google Scholar
  143. Myers, N., Mittermeier, A., Mittermeier, C. G., da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853–858.Google Scholar
  144. Noone, H. V. V. (1945). Stone age relics at Bandarawela. Loris, 4, 263–266.Google Scholar
  145. Nyrop, R. F., Benderly, B. L., Cort, A. S., Parker, N. B., Perlmutter, J. L., Shinn, R. S., & Shivanandan, M. (1971). Area handbook for Ceylon. Washington, DC: US Government Printing Office.Google Scholar
  146. Papworth, S., Milner-Gulland, E. J., & Slocombe, K. (2013). Hunted woolly monkeys (Lagothrix poeppigii) show threat-sensitive responses to human presence. PLoS ONE, 8(4), e62000. doi:10.1371/journal.pone.0062000.Google Scholar
  147. Parker, H. (1909). Ancient Ceylon. London: Luzac.Google Scholar
  148. Pavlides, C. (2004). From Misisil Cave to Eliva hamlet: Rediscovering the Pleistocene in interior West New Britain. In V. Auenbrow, & R. Fullagar (Eds.). A Pacific Odyssey: Archaeology and anthropology in the Western Pacific. Papers in Honour of Jim Specht. Records of the Australian Museum, Supplement 29 (pp. 97–108). Sydney: Australian Museum.Google Scholar
  149. Pavlides, C., & Gosden, C. (1994). 35,000-year-old sites in the rainforests of West New Britain, Papua New Guinea. Antiquity, 68, 604–610.Google Scholar
  150. Pemadasa, M. A., & Amarasinghe, L. (1982). The Ecology of a montane grassland in Sri Lanka: I. Quantitative description of the vegetation. The Journal of Ecology, 70, 1–15.Google Scholar
  151. Perera, N. P. (1975). A physiognomic vegetation map of Sri Lanka (Ceylon). Journal of Biogeography, 2, 185–203.Google Scholar
  152. Perera, N. (2010). Prehistoric Sri Lanka: Late Pleistocene rockshelters and an open air site, BAR International Series. Oxford: Archaeopress.Google Scholar
  153. Perera, N., Kourampas, N., Simpson, I. A., Deraniyagala, S. U., Bulbeck, D., Kamminga, J., et al. (2011). People of the ancient rainforest: Late Pleistocene foragers at the Batadomba-lena rockshelter, Sri Lanka. Journal of Human Evolution, 61, 254–269.Google Scholar
  154. Perera, N., Roberts, P., & Petraglia, M. (2015). Bone technology in South Asia from Late Pleistocene rockshelter deposits in Sri Lanka. In M. C. Langley (Ed.), Osseous projectile weaponry: Towards an understanding of Pleistocene cultural variability. VERT Series. New York: Springer.Google Scholar
  155. Peres, C. A. (1990). Effects of hunting on western Amazonian primate communities. Biological Conservation, 54, 47–59.Google Scholar
  156. Petraglia, M. D., Clarkson, C., Boivin, N., Haslam, M., Korisettar, R., Chaubey, G., et al. (2009). Population increase and environmental deterioration correspond with microlithic innovations in South Asia ca. 35,000 years ago. Proceedings of the National Academy of Sciences of the United States of America, 106, 12261–12266.Google Scholar
  157. Phillips, W. W. A. (1980). Manual of the mammals of Sri Lanka (volumes 1, 2 and 3), 2nd revised edition. Colombo: Wildlife and Nature Protection Society of Sri Lanka.Google Scholar
  158. Pole, J. (1913). Ceylon stone implements. Calcutta: Thacker, Spink & Company.Google Scholar
  159. Prabhu, C. N., Shankar, R., Anupama, K., Taieb, M., Bonnefille, R., Vidal, L., & Prasad, S. (2004). A 200-ka pollen and oxygen-isotopic record from two sediment cores from the eastern Arabian Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 214, 309–321.Google Scholar
  160. Premathilake, R. T. (2006). Relation of environmental changes in central Sri Lanka to possible land use and climate changes. Palaeogeography, Palaeoclimatology and Palaeoecology, 240, 468–496.Google Scholar
  161. Premathilake, R. T. (2012). Human used upper montane ecosystem in the Horton Plains, Central Sri Lanka: A link to late glacial–early Holocene climate and environmental changes. Quaternary Science Reviews, 50, 23–42.Google Scholar
  162. Premathilake, R., & Gunatilaka, A. (2013). Chronological framework of Asian Southwest Monsoon events and variations over the past 24,000 years in Sri Lanka and regional correlations. Journal of National Science Foundation Sri Lanka, 41(3), 219–228.Google Scholar
  163. Premathilake, R., & Risberg, J. (2003). Late Quaternary history of the Horton Plains, central Sri Lanka. Quaternary Science Review, 22, 1525–1541.Google Scholar
  164. Prideaux, G. J., Gully, G. A., Couzens, A. M. C., Ayliffe, L. K., Jankowski, N. R., Jacobs, Z., et al. (2010). Timing and dynamics of Late Pleistocene mammal extinctions in southwestern Australia. Proceedings of the National Academy of Sciences of the United States of America, 107(51), 22157–22162.Google Scholar
  165. Primavera, J. H., Sadaba, R. B., Lebata, M. J. H. L., & Altamirano J. P. (2004). Handbook of mangroves in the PhilippinesPanay. Iloilo: SEAFDEC Aquaculture Department and UNESCO Man and the Biosphere ASPACO Project.Google Scholar
  166. ProWildlife. (2007). Going to pot: The neotropical bushmeat crisis and its impact on primate populations. Munich: ProWildlife.Google Scholar
  167. Puvaneswaran, K. M. (1992). A study of rainfall fluctuations in the homogeneous rainfall regimes in Sri Lanka. Unpublished Ph.D. University of Sheffield.Google Scholar
  168. Puvaneswaran, K. M., & Smithson, P. A. (1993). Controls on precipitation distributions in Sri Lanka. Theoretical and Applied Climatology, 47, 105–115.Google Scholar
  169. Pyron, R. A., Kandambi, H. K., Hendry, C. R., Pushpamal, V., Burbrink, F. T., & Somaweera, R. (2013). Genus-level phylogeny of snakes reveals the origins of species richness in Sri Lanka. Molecular Phylogenetics and Evolution, 66(3), 969–978.Google Scholar
  170. Rabett, R. J. (2012). Human adaptation in the Asian Palaeolithic. Cambridge: Cambridge University Press.Google Scholar
  171. Ranasinghe, P. N., Ortiz, J. D., Moore, A. L., McAdoo, B., Wells, N., Siriwardana, C. H. E. R., & Wijesundara, D. T. D. S. (2013). Mid-Late Holocene coastal environmental changes in southeastern Sri Lanka: New evidence for sea level variations in southern Bay of Bengal. Quaternary International, 17, 20–36.Google Scholar
  172. Ranaweera, L., Kaewsutthi, S., Tun, A. W., Boonyarit, H., Poolsuwan, S., & Lertrit, P. (2014). Mitochondrial DNA history of Sri Lankan ethnic people: Their relations within the island and with the Indian subcontinental populations. Journal of Human Genetics, 59(1), 28–36.Google Scholar
  173. Rashid, H., England, E., Thompson, L., & Polyak, L. (2011). Late Glacial to Holocene Indian summer monsoon variability based upon sediment records taken from the Bay of Bengal. Terrestrial, Atmospheric and Ocean Sciences, 22(2), 215–228.Google Scholar
  174. Rasmussen, M., Guo, X., Wang, Y., Lohmueller, K. E., Rasmussen, S., Albrechtsen, A., et al. (2011). An Aboriginal Australian genome reveals separate human dispersals into Asia. Science, 334(6052), 94–98.Google Scholar
  175. Ray, N., & Adams, J. (2001). A GIS-based vegetation map of the world at the Last Glacial Maximum (25,000–15,000 BP). Internet Archaeology, 11.Google Scholar
  176. Reed, F. A., Kontanis, E. J., Kennedy, K. A., & Aquadro, C. F. (2003). Brief communication: Ancient DNA prospects from Sri Lankan highland dry caves support an emerging global pattern. American Journal of Physical Anthropology, 121(2), 112–116.Google Scholar
  177. Refisch, J., & Koné, I. (2005). Impact of commercial hunting on monkey populations in the Taï region, Côte d’Ivoire. Biotropica, 37(1), 136–144.Google Scholar
  178. Reich, D., Patterson, N., Kircher, M., Delfin, F., Nandineni, M. R., Pugach, I., et al. (2011). Denisova admixture and the first Modern Human dispersals into Southeast Asia and Oceania. The American Journal of Human Genetics, 89(4), 516–528.Google Scholar
  179. Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., et al. (2013). IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon, 55(4), 1869–1887.Google Scholar
  180. Reyes-Centeno, H., Ghirotto, S., Détroit, F., Grimaud-Hervé, D., Barbujani, G., & Harvati, K. (2014). Genomic and cranial phenotype data support multiple Modern Human dispersals from Africa and a southern route into Asia. Proceedings of the National Academy of Sciences of the United States of America, 111(20), 7248–7253.Google Scholar
  181. Rick, T. C., Vellanoweth, R. L., & Erlandson, J. M. (2005). Radiocarbon dating and the ‘old shell’ problem: Direct dating of artifacts and cultural chronologies in coastal and other aquatic regions. Journal of Archaeological Science, 32, 1641–1648.Google Scholar
  182. Roberts, P., Delson, E., Miracle, P., Ditchfield, P., Roberts, R. G., Jacobs, Z., et al. (2014). Continuity of mammalian fauna over the last 200,000 y in the Indian subcontinent. Proceedings of the National Academy of Sciences of the United States of America, 111(16), 5848–5853.Google Scholar
  183. Roberts, P., Perera, N., Wedage, O., Deraniyagala, S., Perera, J., Eregama, S., et al. (2015). Direct evidence for human reliance on rainforest resources in late Pleistocene Sri Lanka. Science, 347(6227), 1246–1249.Google Scholar
  184. Rohling, E. J., Fenton, M., Jorissen, F. J., Bertrand, P., Ganssen, G., & Caulet, J. P. (1998). Magnitudes of sea-level lowstands of the past 500,000 years. Nature, 394, 162–165.Google Scholar
  185. Roy, B. (2008). Modern microlith makers in Mandla, Madhya Pradesh (India): Continuity or re-invention? Antiquity, 82(318). http://antiquity.ac.uk/ProjGall/roy/index.html.
  186. Roy, B. (2009). Prehistoric sites in Mandla, Madhya Pradesh (India), with evidence of using modern materials. Hukay, 14, 25–46.Google Scholar
  187. Roy, B. (2011). Use of recycled stone tools in the prehistoric culture of Mandla. Current Science, 101(6), 718–719.Google Scholar
  188. Roy, B. (2012). Microlithic sites of Mandla (Madhya Pradesh: India) and the problem of schematic generalisation in prehistoric archaeology. Hukay, 17, 79–110.Google Scholar
  189. Rule, S., Brook, B. W., Haberle, S. G., Turney, C. S. M., Kershaw, A. P., & Johnson, C. N. (2012). The aftermath of megafaunal extinction: Ecosystem transformation in Pleistocene Australia. Science, 335(6075), 1483–1486.Google Scholar
  190. Saitou, N. (2011). A commentary on the Soliga, an isolated tribe from Southern India: Genetic diversity and phylogenetic affinities. Journal of Human Genetics, 56, 257.Google Scholar
  191. Sarasin, P., & Sarasin, F. (1907). Stone implements in Veddha caves. Spolia Zeylanica, 4(16), 188–190.Google Scholar
  192. Sarasin, P., & Sarasin, F. (1908). Die Steinzeit auf Ceylon. Ergebnisse naturwissenschaftlicher Forschungen auf Ceylon, IV. Wiesbaden: C.W. Kreidel’s Verlag (trans. D. Bulbeck), June–August 2006. http://arts.anu.edu.au/bllda/sarasins.html.
  193. Satyanarayana, B., Mulder, S., Jayatissa, L. P., & Dahdouh-Guebas, F. (2013). Are the mangroves in the Galle-Unawatuna area (Sri Lanka) at risk? A social–ecological approach involving local stakeholders for a better conservation policy. Ocean and Coastal Management, 71, 225–237.Google Scholar
  194. Schulte, J. A., Macey, J. R., Pethiyagoda, R., & Larson, A. (2002). Rostral horn evolution among agamid lizards of the genus Ceratophora endemic to Sri Lanka. Molecular Phylogenetics and Evolution, 22, 111–117.Google Scholar
  195. Schulz, H., von Rad, U., Erlenkeuser, H., & von Rad, U. (1998). Correlation between Arabian Sea and Greenland climate oscillations of the past 110,000 years. Nature, 393, 54–57.Google Scholar
  196. Seligmann, C. G. (1908). Quartz implements from Ceylon. Man, 8, 113–116.Google Scholar
  197. Seligmann, C. G. (1909). Review of ‘Ergebnisse naturwissenschaftlicher Forschungen auf Ceylon’ by Paul Sarasin & Fritz Sarasin. Man, 9, 78.Google Scholar
  198. Seligmann, C. G., & Seligmann, B. Z. (1908). An itinerary of the Vedda country. Spolia Zeylanica, 5(20), 155–170.Google Scholar
  199. Seligmann, C. G., & Seligmann, B. Z. (1911). The Veddas. Cambridge: Cambridge University Press.Google Scholar
  200. Shea, J. J. (2006). The origins of lithics projectile point technology: Evidence from Africa, the Levant, and Europe. Journal of Archaeological Science, 33(6), 823–846.Google Scholar
  201. Shea, J. J., & Sisk, M. L. (2010). Complex projectile technology and Homo sapiens dispersal from Africa to Western Eurasia. Paleoanthropology, 2010, 100–122.Google Scholar
  202. Shipton, C., Petraglia, M., Koshy, J., Bora, J., Brumm, A., Boivin, N., et al. (2012). Lithic technology and social transformations in the South Indian Neolithic: The evidence from Sanganakallu–Kupgal. Journal of Anthropological Archaeology, 31(2), 156–173.Google Scholar
  203. Smith, M. A. (1943). Fauna of British India. Reptilia and amphibia, Vol. 3, serpentes. London: Taylor & Francis.Google Scholar
  204. Smith, E. A. (1983). Anthropological applications of optimal foraging theory: A critical review. Current Anthropology, 24(5), 625–651.Google Scholar
  205. Smith, E. A., & Winterhalder, B. (1981). New perspectives on hunter-gatherer socioecology. In B. Winterhalder & E. A. Smith (Eds.), Hunter-gatherer foraging strategies (pp. 1–12). Chicago: University of Chicago Press.Google Scholar
  206. Solheim, W. G., & Deraniyagala, S. U. (1972). Archaeological survey to investigate Southeast Asian prehistoric presence in Ceylon. Ancient Ceylon, Occasional Paper No. 1.Google Scholar
  207. Somadeva, R., & Ranasinghe, R. (2006). An excavation of a shell midden at Pallemalla in southern littoral area of Sri Lanka. Ancient Asia, 1, 14–24.Google Scholar
  208. Somaratne, S., & Dhanapala, A. H. (1996). Potential impact of global climate change on forest in Sri Lanka. In L. Erda, W. Bolhofer, S. Huq, S. Lenhart, S. K. Mukherjee, J. B. Smith, & J. Wisniewski (Eds.), Climate change variability and adaptation in Asia and the Pacific (pp. 129–135). Dordrecht: Kluwer.Google Scholar
  209. Stiner, M. C., Munro, N. D., Surovell, T. A., Tchernov, E., & Bar-Yosef, O. (1999). Paleolithic population growth pulses evidenced by small mammal exploitation. Science, 283, 190–194.Google Scholar
  210. Stock, J. T., Lahr, M. M., & Kulatilake, S. (2007). Cranial diversity in South Asia relative to modern human dispersals and global patterns of human variation. In M. D. Petraglia & B. A. Allchin (Eds.), The evolution and history of human populations in South Asia (pp. 245–268). Dordrecht: Springer.Google Scholar
  211. Straus, L. G. (2002). Selecting small: Microlithic musings for the Upper Paleolithic and Mesolithic of Western Europe. In R. G. Elston & S. L. Kuhn (Eds.), Thinking small: Global perspectives on microlithization. Archaeological papers, 12 (pp. 69–82). Arlington: American Anthropological Association.Google Scholar
  212. Stringer, C. B., Finlayson, J. C., Barton, R. N. E., Fernández-Jalvo, Y., Cáceres, I., et al. (2008). Neanderthal exploitation of marine mammals in Gibraltar. Proceedings of the National Academy of Sciences of the United States of America, 105(38), 14319–14324.Google Scholar
  213. Sukumar, R., Ramesh, R., Pant, R. K., & Rajagopalan, G. (1993). A δ13C record of late Quaternary climate change from tropical peats in southern India. Nature, 364(6439), 703–706.Google Scholar
  214. Summerhayes, G. R., Leavesley, M., Fairbairn, A., Mandui, H., Field, J., Ford, A., & Fullagar, R. (2010). Human adaptation and plant use in Highland New Guinea 49,000 to 44,000 years ago. Science, 330, 78–81.Google Scholar
  215. Tennant, J. E. (1861). Sketches of the natural history of Ceylon. London: Longman.Google Scholar
  216. Thompson, L. G., Mosley-Thompson, E., & Henderson, K. A. (2000). Ice-core palaeoclimate records in tropical South America since the Last Glacial Maximum. Journal of Quaternary Science, 15(4), 377–394.Google Scholar
  217. Tribolo, C., Mercier, N., Valladas, H., Joron, J. L., Guibert, P., Lefrais, Y., et al. (2009). Thermoluminescence dating of a Stillbay–Howieson’s Poort sequence at Diepkloof Rock Shelter (Western Cape, South Africa). Journal of Archaeological Science, 36(3), 730–739.Google Scholar
  218. Van Driem, G. (2007). Endangered languages of South Asia. In B. Matthias (Ed.), Language diversity endangered (pp. 303–341). Berlin: Mouton de Gruyter.Google Scholar
  219. Van Noten, F. (1977). Excavations at Matupi cave. Antiquity, 51, 35–40.Google Scholar
  220. Vaz, G. G. (2000). Age of relict coral reef from the continental shelf off Karaikal, Bay of Bengal: Evidence of Last Glacial Maximum. Current Science, 79(2), 228–230.Google Scholar
  221. Vidya, T. N. C., Fernando, P., Melnick, D. J., & Sukumar, R. (2005). Population differentiation within and among Asian elephant (Elephas maximus) populations in southern India. Heredity, 94(1), 71–80.Google Scholar
  222. Wallace, A. R. (1876). The geographical distribution of animals. London: Macmillan.Google Scholar
  223. Wang, P., Clemens, S., Beaufort, L., Braconnot, P., Ganssen, G., Jian, Z., et al. (2005). Evolution and variability of the Asian monsoon system: State of the art and outstanding issues. Quaternary Science Reviews, 24, 595–629.Google Scholar
  224. Wayland, E. J. (1919). Outline of the stone age of Ceylon. Spolia Zeylanica, 11, 85–125.Google Scholar
  225. Wijeyapala, W. H. (1997). New light on the prehistory of Sri Lanka in the context of recent investigations of cave sites. Ph.D. Dissertation, University of Peradeniya.Google Scholar
  226. Wilkie, D. S., Curran, B., Tshombe, R., & Morelli, G. A. (1998). Modeling the sustainability of subsistence farming and hunting in the Ituri Forest of Zaire. Conservation Biology, 12(1), 137–147.Google Scholar
  227. Wintle, A. G., & Oakley, K. P. (1972). Themoluminescent dating of fired rock-crystal from Bellan Bandi Palassa, Ceylon. Archaeometry, 14, 277.Google Scholar
  228. Yu, G., Chen, X., Ni, J., Cheddadi, R., Guiot, J., Han, H., et al. (2000). Palaeovegetation of China: A pollen data-based synthesis for the mid-Holocene and Last Glacial Maximum. Journal of Biogeography, 27, 635–664.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Patrick Roberts
    • 1
  • Nicole Boivin
    • 1
  • Michael Petraglia
    • 1
  1. 1.Research Laboratory for Archaeology and the History of Art, School of ArchaeologyUniversity of OxfordOxfordUK

Personalised recommendations