Journal of World Prehistory

, Volume 22, Issue 3, pp 301–327 | Cite as

The Emergence of Complex Metallurgy on the Iranian Plateau: Escaping the Levantine Paradigm

Original Paper

Abstract

Models for the development of metallurgy in Southwest Asia have for a long time been focussed on research carried out in the lowland regions of the Levant and Mesopotamia. These models do not take into account the different developmental trajectories witnessed in the resource-rich highlands of Anatolia, the Caucasus, and Iran. In this paper, the beginnings of the use and production of metals in Iran will be juxtaposed with a cursory overview of the lowland model (the ‘Levantine Paradigm’) in order to highlight these differences. By synthesizing data from a number of current research projects exploring the early metallurgy of the Iranian Plateau, this paper demonstrates how at least one of the highland regions of Southwest Asia was at the very forefront of technological innovation from the seventh through the second millennium BC.

Keywords

Iran Metallurgy Copper alloys Levant Chalcolithic Gold Silver Crucibles Slag 

Notes

Acknowledgments

I would like to thank Lesley Frame, Jonathan Golden, Barbara Helwing, Vince Pigott, Ben Roberts, Lloyd Weeks, and the other authors in our 2008 SAA session in Vancouver for their helpful comments and criticisms. Tim Taylor and two anonymous reviewers also provided important revisions to this work. Special thanks to Lesley Frame, Emran Garajian, Ernst Pernicka, and other colleagues for allowing me to comment upon their unpublished data for this synthesis. I am also very grateful to Hassan Fazeli, Claudio Giardino, Barbara Helwing, Gero Steffens and Thomas Stöllner for providing me with images. The editors are very grateful to Dr. Leila Papoli-Yazdi for providing the Persian translation of the abstract.

References

  1. Alden, J. R. (1982). Trade and politics in Proto-Elamite Iran. Current Anthropology, 23(6), 613–640.CrossRefGoogle Scholar
  2. Algaze, G. (1993). The Uruk world system. Chicago: University of Chicago Press.Google Scholar
  3. Arab, R., & Rehren, Th. (2004a). The Wertime pyrotechnological expedition of 1968. Institute for Archaeo-Metallurgical Studies News, 24, 29–34.Google Scholar
  4. Arab, R., & Rehren, Th. (2004b). The pyrotechnological expedition of 1968. In T. Stöllner, R. Slotta, & A. Vatandoust (Eds.), Persiens antike Pracht: Bergbau–Handwerk–Archäologie. Katalog der Ausstellung (pp. 550–555). Bochum: Deutsches Bergbau-Museum.Google Scholar
  5. Arne, T. J. (1945). Excavations at Shah Tepe, Iran. Publication 27. Stockholm: The Sino-Swedish Expedition.Google Scholar
  6. Artioli, D., Giardino, C., Guida, G., Lazzari, A., & Vidale, M. (2005). On the exploitation of copper ores at Shahr-i Sokhta (Sistan, Iran) in the 3rd millennium BC. In U. Franke-Vogt & H.-J. Weisshaar (Eds.), South Asian Archaeology 2003. Forschungen zur Archäologie außereuropäischer Kulturen (FAAK), 1 (pp. 179–184). Bonn: Verlag Linden Soft.Google Scholar
  7. Azarnoush, M., & Helwing, B. (2005). Recent archaeological research in Iran: Prehistory to Iron Age. Archaeologische Mitteilung aus Iran und Turan, 37, 189–246.Google Scholar
  8. Bachmann, H.-G. (1980). Early copper smelting techniques in Sinai and in the Negev as deduced from slag investigations. In P. T. Craddock (Ed.), Scientific studies in early mining and extractive metallurgy. Occasional paper no. 20 (pp. 103–134). London: British Museum.Google Scholar
  9. Bar-Adon, P. (1980). The cave of the treasure: The finds from the caves of Nihal Mishmar. Jerusalem: Israel Exploration Society.Google Scholar
  10. Bar-Yosef Mayer, D., & Porat, N. (2008). Green stone beads at the dawn of agriculture. Proceedings of the National Academy of Sciences, 105, 8548–8551.CrossRefGoogle Scholar
  11. Bates, D. G., & Rassam, A. (2001). Peoples and cultures of the Middle East. Upper Saddle River, N.J.: Prentice Hall.Google Scholar
  12. Bazin, D., & Hübner, H. (1969). Copper deposits in Iran. Report 13. Tehran: Geological Survey of Iran.Google Scholar
  13. Benoit, A. (2004). Susa. In T. Stöllner, R. Slotta, & A. Vatandoust (Eds.), Persiens antike Pracht: Bergbau–Handwerk–Archäologie. Katalog der Ausstellung (pp. 178–193). Bochum: Deutsches Bergbau-Museum.Google Scholar
  14. Bernbeck, R. (2004). Iran im Neolithikum. In T. Stöllner, R. Slotta, & A. Vatandoust (Eds.), Persiens antike Pracht: Bergbau–Handwerk–Archäologie. Katalog der Ausstellung (pp. 140–147). Bochum: Deutsches Bergbau-Museum.Google Scholar
  15. Boroffka, N., & Becker, J. (2004). Töpferöfen in Arisman. In T. Stöllner, R. Slotta, & A. Vatandoust (Eds.), Persiens antike Pracht: Bergbau–Handwerk–Archäologie. Katalog der Ausstellung (pp. 218–221). Bochum: Deutsches Bergbau-Museum.Google Scholar
  16. Bourgarit, D. (2007). Chalcolithic copper smelting. In S. La Niece, D. Hook, & P. T. Craddock (Eds.), Metals and mines: Studies in archaeometallurgy (pp. 3–14). London: Archetype Publications Ltd.Google Scholar
  17. Caldwell, J. R. (Ed.) (1967a). Investigations at Tal-i-Iblis. Preliminary reports no. 9. Springfield, IL: Illinois State Museum Society.Google Scholar
  18. Caldwell, J. R. (Ed.) (1967b). The setting and results of the Kerman Project. In J. R. Caldwell (Ed.), Investigations at Tal-i Iblis. Preliminary reports no. 9 (pp. 21–40). Springfield: Illinois State Museum Society.Google Scholar
  19. Caldwell, J. R. (Ed.) (1968). Tal-I-Iblis and the beginning of copper metallurgy at the fifth millennium. Archaeologia viva 1, 145–150.Google Scholar
  20. Caldwell, J. R., & Sarraf, M. (1967). Exploration of excavation area B. In J. R. Caldwell (Ed.), Investigations at Tal-i-Iblis. Preliminary reports no. 9 (pp. 272–308). Springfield, IL: Illinois State Museum Society.Google Scholar
  21. Caldwell, J. R., & Shahmirzadi, S. M. (1966). Tal-i-Iblis: The Kerman range and the beginnings of smelting. Preliminary reports no. 7. Springfield, IL: Illinois State Museum Society.Google Scholar
  22. Charles, J. A. (1980). The coming of copper and copper-base alloys and iron: A metallurgical sequence. In T. A. Wertime & J. D. Muhly (Eds.), The coming of the age of iron (pp. 151–182). New Haven: Yale University Press.Google Scholar
  23. Chegini, N. N., Helwing, B., Parzinger, H., & Vatandoust, A. (2004). Eine prähistorische Industriesiedlung auf dem iranischen Plateau–Forschungen in Arisman. In T. Stöllner, R. Slotta, & A. Vatandoust (Eds.), Persiens antike Pracht: Bergbau–Handwerk–Archäologie. Katalog der Ausstellung (pp. 210–216). Bochum: Deutsches Bergbau-Museum.Google Scholar
  24. Chegini, N. N., Momenzadeh, M., Parzinger, H., Pernicka, E., Stöllner, Th., Vatandoust, A., et al. (2000). Preliminary report on archaeometallurgical investigations around the prehistoric site of Arisman near Kashan, western Central Iran. Archaeologische Mitteilungen aus Iran und Turan, 32, 281–318.Google Scholar
  25. Courcier, A. (2007). La metallurgie dans les pays du Caucase au Chalcolithique et au début de l’âge du Bronze: bilan des études et perspectives nouvelles. In B. Lyonnet (Ed.), Les cultures du Caucase (VI e –III e millénaires av. n. è.): Leurs relations avec le Proche-Orient (pp. 199–232). Paris: CNRS/Éditions recherche sur les civilisations.Google Scholar
  26. Craddock, P. T. (2001). From hearth to furnace: Evidences for the earliest metal smelting technologies in the eastern Mediterranean. Paléorient, 26, 151–165.CrossRefGoogle Scholar
  27. Dercksen, J. G. (2005). Metals according to the documents from Kültepe–Kanish dating to the Old Assyrian Colony Period. In Ü. Yalçin (Ed.), Anatolian Metal III. Der Anschnitt, Beiheft 18 (pp. 17–34). Bochum: Deutsches Bergbau-Museum.Google Scholar
  28. Dyson, R. H., & Howard, S. M. (Eds.) (1989). Tappeh Hesar. Reports of the Restudy Project, 1976. Firenze: Case Editrice le Lettere.Google Scholar
  29. Evett, D. (1967). Artifacts and architecture of the Iblis I period: Areas D, F, and G. In J. R. Caldwell (Ed.), Investigations at Tal-i-Iblis. Preliminary reports no. 9 (pp. 202–255). Springfield, IL: Illinois State Museum Society.Google Scholar
  30. Fazeli Nashli, H., & Abbasnejad Sereshti, R. (2005). Social transformation and interregional interaction in the Qazvin Plain during the 5th, 4th, and 3rd millennia BC. Archaeologische Mitteilung aus Iran und Turan, 37, 7–26.Google Scholar
  31. Fazeli, H., Wong, E. H., & Potts, D. T. (2005). The Qazvin Plain revisited: A reappraisal of the chronology of northwestern Central Plateau, Iran, in the 6th to the 4th millennium BC. Ancient Near Eastern Studies, 42, 3–82.CrossRefGoogle Scholar
  32. Fleming, S. J., Pigott, V. C., Swann, C. P., & Nash, S. K. (2005). Bronze in Luristan: Preliminary analytical evidence from copper/bronze artifacts excavated by the Belgian Mission in Iran. Iranica Antiqua, 40, 35–64.CrossRefGoogle Scholar
  33. Frame, L. D. (2004). Investigations at Tal-i Iblis: Evidence for copper smelting during the Chalcolithic period. BS thesis. Department of Materials Science and Engineering, Massachusetts Institute of Technology.Google Scholar
  34. Frame, L. D. (2007). Metal finds from Godin Tepe, Iran: Production, consumption, and trade. MS thesis, Department of Materials Science and Engineering, University of Arizona.Google Scholar
  35. Genz, H., & Hauptmann, A. (2002). Chalcolithic and EBA metallurgy in the southern Levant. In Ü. Yalçin (Ed.), Anatolian Metal II. Der Anschnitt, Beiheft 15 (pp. 149–158). Bochum: Deutsches Bergbau-Museum.Google Scholar
  36. Ghirshman, R. (1938). Fouilles de Sialk. Paris: Librairie Orientaliste Paul Guenthner.Google Scholar
  37. Golden, J. M. (1998). The dawn of the Metal Age: Social complexity and the rise of copper metallurgy during the Chalcolithic of the southern Levant, ca. 4500–3500 BC. PhD dissertation, Department of Anthropology, University of Pennsylvania.Google Scholar
  38. Golden, J. M., Levy, T., & Hauptmann, A. (2001). Recent discoveries concerning chalcolithic metallurgy at Shiqmim, Israel. Journal of Archaeological Science, 28(9), 951–963.CrossRefGoogle Scholar
  39. Gopher, A., Tsuk, T., Shalev, S., & Gophna, R. (1990). Earliest gold artifacts in the Levant. Current Anthropology, 31, 436–443.CrossRefGoogle Scholar
  40. Goren, Y. (2008). The location of specialized copper production by the lost wax technique in the Chalcolithic southern Levant. Geoarchaeology, 23, 374–397.CrossRefGoogle Scholar
  41. Hauptmann, A. (1980). Zur frühbronzezeitlichen Metallurgie von Shahr-i Sokhta (Iran). Der Anschnitt 1980 (2–3), 55–61. Bochum: Deutsches Bergbau-Museum.Google Scholar
  42. Hauptmann, A. (1985). 5000 Jahre Kupfer im Oman. Der Anschnitt, Beiheft 4. Bochum: Deutsches Bergbau- Museum.Google Scholar
  43. Hauptmann, A. (1989). The earliest periods of copper metallurgy in Feinan. In A. Hauptmann, E. Pernicka, & G. A. Wagner (Eds.), Old World Archaeometallurgy. Der Anschnitt, Beiheft 7 (pp. 119–135). Bochum: Deutsches Bergbau Museum.Google Scholar
  44. Hauptmann, A. (1991). From the use of ore to the production of metal. In J.-P. Mohen & C. Eluère (Eds.), Découverte du métal (pp. 397–412). Paris: Picard.Google Scholar
  45. Hauptmann, A. (2000). Zur frühen Metallurgie des Kupfers in Fenan, Jordanien. Der Anschnitt, Beiheft 11. Bochum: Deutsches Bergbau-Museum.Google Scholar
  46. Hauptmann, A. (2003). Rationales of liquefaction and metal separation in earliest copper smelting: basics for reconstructing Chalcolithic and Early Bronze Age smelting processes. In Archaeometallurgy in Europe. Proceedings of the International Conference 24–26 September 2003, Milan (pp. 459–468). Milano: Associazione Italiana di Metallurgia.Google Scholar
  47. Hauptmann, A. (2007). The archaeometallurgy of copper: Evidence from Faynan. Jordan. Berlin: Springer.CrossRefGoogle Scholar
  48. Hauptmann, A., Begemann, F., Heitkemper, R., Pernicka, E., & Schmitt-Strecker, S. (1992). Early copper produced at Feinan, Wadi Arabah, Jordan: The composition of ores and copper. Archaeomaterials, 6, 1–33.Google Scholar
  49. Hauptmann, A., Lutz, J., Pernicka, E., & Yalçin, Ü. (1993). Zur Technologie der fruhesten Kupferverhuttung im ostlichen Mittelmeerraum. In M. Frangipane, H. Hauptmann, M. Liverani, P. Matthiae, & M. J. Mellink (Eds.), Between the rivers and over the mountains (pp. 541–572). Roma: Dipartimento di Scienze Storiche, Archeologiche e Antropologiche dell’Antichità.Google Scholar
  50. Hauptmann, A., Rehren, Th., & Schmitt-Strecker, S. (2003). Early Bronze Age copper metallurgy at Shahr-i Sokhta (Iran), reconsidered. In Th. Stöllner, Th. G. Koerlin, G. Steffens, & J. Cierny (Eds.), Man and mining–Mensch und Bergbau. Studies in honour of Gerd Weisgerber. Der Anschnitt, Beiheft 16 (pp. 197–213). Bochum: Deutsches Bergbau-Museum.Google Scholar
  51. Hauptmann, A., & Wagner, I. (2007). Prehistoric copper production at Timna: Thermoluminescence (TL) dating and evidence from the east. In S. La Niece, D. Hook, & P. T. Craddock (Eds.), Metals and mines: Studies in archaeometallurgy (pp. 67–75). London: Archetype Publications Ltd.Google Scholar
  52. Hauptmann, A., & Weisgerber, G. (1980). The Early Bronze Age copper metallurgy of Shahr-i Sokhta (Iran). Paléorient, 6, 120–127.Google Scholar
  53. Hauptmann, A., Weisgerber, G., & Bachmann, H.-G. (1988). Early copper metallurgy in Oman. In R. Maddin (Ed.), The beginning of the use of metals and alloys (pp. 34–51). Cambridge, MA: MIT.Google Scholar
  54. Helmig, D. (1986). Versuche zur analytisch-chemischen Charakterisierung frühbronzezeitlicher Techniken der Kupferverhüttung in Shahr-i Sokhta, Iran. Diplomarbeit. Bochum: Faculty of Chemistry, Ruhr-University.Google Scholar
  55. Helwing, B. (2004). Tracking the Proto-Elamite on the Central Iranian Plateau. In S. M. Shahmirzadi (Ed.), The potters of Sialk (pp. 45–58). Tehran: Iranian Center for Archaeological Research.Google Scholar
  56. Helwing, B. (2005). Early mining and metallurgy on the western Iranian Plateau: First results of the Iranian–German archaeological research at Arisman, 2000–2004. Archaeologische Mitteilung aus Iran und Turan, 37, 425–434.Google Scholar
  57. Heskel, D. L. (1982). The development of pyrotechnology in Iran during the fourth and third millennia B.C. PhD dissertation, Department of Anthropology, Harvard University.Google Scholar
  58. Heskel, D. L. (1983). A model for the adoption of metallurgy in the ancient Middle East. Current Anthropology, 24, 362–365.CrossRefGoogle Scholar
  59. Heskel, D. L., & Lamberg-Karlovsky, C. C. (1980). An alternative sequence for the development of metallurgy: Tepe Yahya, Iran. In T. Wertime & J. Muhly (Eds.), The coming of the Age of Iron (pp. 229–266). New Haven: Yale University Press.Google Scholar
  60. Hess, K. (1998). Frühe Metallurgie am oberen Euphrat: Untersuchungen an archäometallurgischen Funden vom Arslantepe aus dem 4. und 3. Jahrtausend v.Chr. Dissertation, Universität Frankfurt.Google Scholar
  61. Hess, K., Hauptmann, A., Wright, H. T., & Whallon, R. (1998). Evidence of fourth millennium BC silver production at Fatmalı–Kalecik, East Anatolia. In Th. Rehren, A. Hauptmann, & J. D. Muhly (Eds.), Metallurgica Antiqua. Der Anschnitt, Beiheft 8. Bochum: Deutsches Bergbau-Museum.Google Scholar
  62. Hole, F. (2000). New radiocarbon dates for Ali Kosh, Iran. Neolithics, 1, 13.Google Scholar
  63. Kohl, P. L. (1987). The ancient economy, transferable technologies and the Bronze Age world-system: A view from the northeastern frontier of the ancient Near East. In M. Rowlands, M. Larsen, & K. Kristiansen (Eds.), Centre and periphery in the ancient world (pp. 13–24). Cambridge: Cambridge University Press.Google Scholar
  64. Kuhn, T. S. (1962). The structure of scientific revolutions. Chicago: University of Chicago Press.Google Scholar
  65. Lamberg-Karlovsky, C. C. (1967). Archaeology and metallurgical technology in prehistoric Afghanistan, India, and Pakistan. American Anthropologist, 69, 145–162.CrossRefGoogle Scholar
  66. Levy, T. (1995). Cult, metallurgy and rank societies–Chalcolithic period (ca. 4500–3500 BCE). In T. E. Levy (Ed.), The archaeology of society in the Holy Land (pp. 226–244). London: Leicester University Press.Google Scholar
  67. Levy, T. E., Adams, R. B., Hauptmann, A., Prange, M., Schmitt-Strecker, S., & Najjar, M. (2002). Early Bronze Age metallurgy, a newly discovered copper manufactory in southern Jordan. Antiquity, 76, 425–437.Google Scholar
  68. Levy, T., & Shalev, S. (1989). Prehistoric metalworking in the southern Levant: Archaeometallurgical and social perspectives. World Archaeology, 20, 352–372.CrossRefGoogle Scholar
  69. Majidzadeh, Y. (1979). An early coppersmith workshop at Tepe Ghabristan. In Akten des VII. Internationalen Kongresses für Iranische Kunst und Archäologie, München 7–10 September 1976. Archaeologische Mitteilungen aus Iran, suppl. 6 (pp. 82–92). Berlin: Verlag Dietrich Reimer.Google Scholar
  70. Majidzadeh, Y. (1989). An early industrial proto-urban center on the Central Plateau of Iran: Tepe Ghabristan. In A. Leonard & B. B. Williams (Eds.), Essays in ancient civilization presented to Helene J. Kantor. Studies in Ancient Oriental Civilization No. 47 (pp. 157–166). Chicago: Oriental Institute of the University of Chicago.Google Scholar
  71. Matthews, R., & Fazeli, H. (2004). Copper and complexity: Iran and Mesopotamia in the fourth millennium BC. Iran, 42, 61–75.Google Scholar
  72. Merkel, J., & Rothenberg, B. (1999). The earliest steps to copper metallurgy in the western Arabah. In A. Hauptmann, E. Pernicka, Th. Rehren, & Ü. Yalçin (Eds.), The beginnings of metallurgy. Der Anschnitt, Beiheft 9 (pp. 149–166). Bochum: Deutsches Bergbau-Museum.Google Scholar
  73. Mille, B., Bourgarit, D., Haquet, J.-F., & Besenval, R. (forthcoming). From the 7th to the 2nd millennium BC in Balochistan (Pakistan): The development of copper metallurgy before and during the Indus Civilisation. In South Asian Archaeology 2005.Google Scholar
  74. Momenzadeh, M. (2004). Metallische Bodenschätze in Iran in antiker Zeit. Ein kurzer Überblick. In T. Stöllner, R. Slotta, & A. Vatandoust (Eds.), Persiens antike Pracht: Bergbau–Handwerk–Archäologie. Katalog der Ausstellung (pp. 8–21). Bochum: Deutsches Bergbau-Museum.Google Scholar
  75. Moorey, P. R. S. (1969). Prehistoric copper and bronze metallurgy in western Iran (with special reference to Luristan). Iran, 7, 131–153.Google Scholar
  76. Moorey, P. R. S. (1982). Archaeology and pre-Achaemenid metalworking in Iran: A fifteen year retrospective. Iran, 20, 81–101.Google Scholar
  77. Moorey, P. R. S. (1988). The Chalcolithic hoard from Nahal Mishmar, Israel, in context. World Archaeology, 20, 171–189.Google Scholar
  78. Moulherat, C., Tengberg, M., Haquet, J.-F., & Mille, B. (2002). First evidence of cotton at Neolithic Mehrgarh, Pakistan: Analysis of mineralized fibres from a copper bead. Journal of Archaeological Science, 29(12), 1393–1401.CrossRefGoogle Scholar
  79. Muhly, J. D. (1988). The beginnings of metallurgy in the Old World. In R. Maddin (Ed.), The beginning of the use of metals and alloys (pp. 2–20). Cambridge, MA: MIT Press.Google Scholar
  80. Nezafati, N., & Pernicka, E. (2006). The smelters of Sialk: Outcomes of the first stage of archaeometallurgical researches at Tappeh Sialk. In S. M. Shahmirzadi (Ed.), The fishermen of Sialk. Archaeological report monograph series 7 (pp. 79–102). Tehran: Iranian Center for Archaeological Research.Google Scholar
  81. Nezafati, N., Pernicka, E., & Momenzadeh, M. (2006). Ancient tin: Old question and a new answer. Antiquity, 80, 308.Google Scholar
  82. Palmieri, A. M., Frangipane, M., Hauptmann, A., & Hess, K. (1999). Early metallurgy at Arslantepe during the Late Chalcolithic and the Early Bronze Age IA–IB periods. In A. Hauptmann, E. Pernicka, Th. Rehren, & Ü. Yalçin (Eds.), The beginnings of metallurgy. Der Anschnitt, Beiheft 9 (pp. 141–149). Bochum: Deutsches Bergbau-Museum.Google Scholar
  83. Palmieri, A. M., Sertok, K., & Chernykh, E. N. (1993). From Arslantepe metalwork to arsenical copper technology in eastern Anatolia. In M. Frangipane, H. Hauptmann & M. Liverani (Eds.), Between the rivers and over the mountains. Archaeologica Anatolica et Mesopotamica Alba Palmieri dedicata (pp. 573–599). Rome: Università ‘La Sapienza’.Google Scholar
  84. Pernicka, E. (2004a). Kupfer und Silber in Arisman und Tappeh Sialk und die frühe Metallurgie in Iran. In T. Stöllner, R. Slotta, & A. Vatandoust (Eds.), Persiens antike Pracht: Bergbau–Handwerk–Archäologie. Katalog der Ausstellung (pp. 232–239). Bochum: Deutsches Bergbau-Museum.Google Scholar
  85. Pernicka, E. (2004b). Silver production by cupellation in the fourth millennium BC at Tepe Sialk. In S. M. Shahmirzadi (Ed.), The potters of Sialk. Archaeological report monograph series 5 (pp. 69–72). Tehran: Iranian Center for Archaeological Research.Google Scholar
  86. Pernicka, E., Rehren, Th., & Schmitt-Strecker, S. (1998). Late Uruk silver production by cupellation at Habuba Kabira, Syria.I. In Th. Rehren, A. Hauptmann, & J. D. Muhly (Eds.), Metallurgica antiqua. Der Anschnitt, Beiheft 8 (pp. 123–134). Bochum: Deutsches Bergbau-Museum.Google Scholar
  87. Pigott, V. C. (1989). Archaeo-metallurgical investigations at Bronze Age Tappeh Hesar, 1976. In R. H. Dyson & S. M. Howard (Eds.), Tappeh Hesar: reports of the Restudy Project, 1976 (pp. 25–34). Firenze: Case Editrice le Lettere.Google Scholar
  88. Pigott, V. C. (1999a). The development of metal production on the Iranian Plateau: An archaeometallurgical perspective. In V. C. Pigott (Ed.), The archaeometallurgy of the Asian Old World. Symposium series (pp. 73–106). University Museum: Philadelphia.Google Scholar
  89. Pigott, V. C. (1999b). A heartland of metallurgy: Neolithic/Chalcolithic metallurgical origins on the Iranian Plateau. In A. Hauptmann, E. Pernicka, Th. Rehren, & Ü. Yalçin (Eds.), The beginnings of metallurgy. Der Anschnitt, Beiheft 9 (pp. 109–122). Bochum: Deutsches Bergbau-Museum.Google Scholar
  90. Pigott, V. C. (2004). Zur Bedeutung Irans für die Erforschung prähistorischer Kupfermetallurgie. In T. Stöllner, R. Slotta, & A. Vatandoust (Eds.), Persiens antike Pracht: Bergbau–Handwerk–Archäologie. Katalog der Ausstellung (pp. 28–43). Bochum: Deutsches Bergbau-Museum.Google Scholar
  91. Pigott, V. C., Howard, S. M., & Epstein, S. M. (1982). Pyrotechnology and culture change at Bronze Age Tepe Hissar (Iran). In T. A. Wertime & S. F. Wertime (Eds.), Early pyrotechnology: The evolution of the first fire-using industries (pp. 215–236). Washington, D.C.: Smithsonian Institute Press.Google Scholar
  92. Pigott, V. C., & Lechtman, H. (2003). Chalcolithic copper-base metallurgy on the Iranian plateau: A new look at old evidence from Tal-i Iblis. In T. Potts, M. Roaf, & D. Stein (Eds.), Culture through objects: Ancient Near Eastern studies in honour of P.R.S. Moorey (pp. 291–312). Oxford: Griffith Institute.Google Scholar
  93. Pigott, V. C., Rogers, H. C., & Nash, S. K. (2003a). Archaeometallurgical investigations at Tal-e Malyan: The Banesh period. In W. M. Sumner (Ed.), Early urban life in the land of Anshan: Excavations at Tal-e Malyan in the highlands of Iran. Monograph 117. Philadelphia: University of Pennsylvania Museum of Archaeology and Anthropology. (pp. 94–102, 149–159).Google Scholar
  94. Pigott, V. C., Rogers, H. C., & Nash, S. K. (2003b). Archaeometallurgical investigations at Tal-e Malyan: The evidence for tin-bronze in the Kaftari phase. In N. F. Miller & K. Abdi (Eds.), Yeki Bud, Yeki Nabud: Essays on the archaeology of Iran in honor of William M. Sumner (pp. 161–175). Philadelphia: University of Pennsylvania Museum of Archaeology and Anthropology.Google Scholar
  95. Prange, M. (2001). 5000 Jahre Kupfer im Oman, Band II. Metalla 8.5. Bochum.Google Scholar
  96. Reiter, K. (1999). Metals and metallurgy in the Old Babylonian Period. In A. Hauptmann, E. Pernicka, Th. Rehren, & Ü. Yalçin (Eds.), The beginnings of metallurgy. Der Anschnitt, Beiheft 9 (pp. 167–171). Bochum: Deutsches Bergbau-Museum.Google Scholar
  97. Renfrew, C., Dixon, J. E., & Cann, J. R. (1966). Obsidian and early cultural contact in the Near East. Proceedings of the Prehistoric Society, 32, 30–72.Google Scholar
  98. Rostoker, W., & Dvorak, J. (1991). Some experiments with co-smelting to copper alloys. Archaeomaterials, 5, 5–20.Google Scholar
  99. Rothenberg, B. (Ed.). (1990). The ancient metallurgy of copper. London: Institute of Archaeo-Metallurgical Studies.Google Scholar
  100. Rothenberg, B., Segal, I., & Khalaily, H. (2003). Late Neolithic and Chalcolithic copper smelting at Yotvata oasis in the South Arabah. In Archaeometallurgy in Europe. Proceedings of the International Conference 24–26 September 2003, Milan (pp. 577–586). Milano: Associazione Italiana di Metallurgia.Google Scholar
  101. Rowan, Y. M., & Golden, J. (2009). The Chalcolithic period of the southern Levant: A synthetic review. Journal of World Prehistory, 22, 1–92.CrossRefGoogle Scholar
  102. Schoop, U.-D. (1995). Die Geburt des Hephaistos: Technologie und Kulturgeschichte neolithischer Metallverwendung in Vorderen Orient. Espelkamp: Verlag Marie L. Leidorf.Google Scholar
  103. Schoop, U.-D. (1999). Aspects of early metal use in Neolithic Mesopotamia. In A. Hauptmann, E. Pernicka, T. Rehren, & Ü. Yalçin (Eds.), The beginnings of metallurgy. Der Anschnitt, Beiheft 9 (pp. 31–36). Bochum: Deutsches Bergbau Museum.Google Scholar
  104. Schreiner, M. (2002). Mineralogical and geochemical investigations into prehistoric smelting slags from Tepe Sialk/Central Iran. Diplomarbeit, Freiberg: Institut für Minerologie, TU Bergakademie.Google Scholar
  105. Schreiner, M., Heimann, R. B., & Pernicka, E. (2003). Mineralogical and geochemical investigations into prehistoric smelting slags from Tepe Sialk/Central Iran. In Archaeometallurgy in Europe. Proceedings of the International Conference 24–26 September 2003, Milan (pp. 487–496). Milano: Associazione Italiana di Metallurgia.Google Scholar
  106. Segal, I., Halicz, L., & Kamenski, A. (2002). The metallurgical remains from Ashqelon–Afridar, Israel, and their source. In E. Jerem & K. T. Biro (Eds.), Archaeometry 98: proceedings of the 31st Symposium, Budapest, April 26–May 3 1998. BAR International Series 1043 (pp. 461–473). Oxford: Archaeopress.Google Scholar
  107. Segal, I., Halicz, L., & Kamenski, A. (2004). The metallurgical remains from Ashqelon, Afridar–Areas E, G, and H. Atiqot, 45, 311–330.Google Scholar
  108. Shahmirzadi, S. M. (Ed.). (2003). The silversmiths of Sialk. Sialk Reconsideration Project, No. 2. Tehran: Iranian Center for Archaeological Research.Google Scholar
  109. Shalev, S. (1991). Two different copper industries in the chalcolithic cultures of Israel. In J.-P. Mohen & C. Eluère (Eds.), Découverte du métal (pp. 413–424). Paris: Picard.Google Scholar
  110. Shalev, S. (1994). The change in metal production from the Chalcolithic period to the Early Bronze Age in Israel and Jordan. Antiquity, 68, 630–637.Google Scholar
  111. Shalev, S., Goren, Y., Levy, T. E., & Northover, J. P. (1992). A Chalcolithic mace head from the Negev, Israel: Technological aspects and cultural implications. Archaeometry, 34(1), 63–71.CrossRefGoogle Scholar
  112. Shalev, S., & Northover, J. P. (1987). Chalcolithic metal and metalworking from Shiqmim. In T. E. Levy (Ed.), Shiqmim I. B.A.R. International Series 365 (pp. 357–371). Oxford: Archaeopress.Google Scholar
  113. Shalev, S., & Northover, J. P. (1993). The metallurgy of the Nahal Mishmar hoard reconsidered. Archaeometry, 35, 35–46.CrossRefGoogle Scholar
  114. Shugar, A. (2000). Archaeometallurgical investigation of the Chalcolithic site of Abu Matar, Israel: A reassessment of technology and its implications for the Ghassulian Culture. PhD dissertation. Institute of Archaeology, University College London.Google Scholar
  115. Shugar, A. (2003). Reconstructing the Chalcolithic metallurgical process at Abu Matar, Israel. In Archaeometallurgy in Europe. Proceedings of the International Conference 24–26 September 2003, Milan (pp. 449–458). Milano: Associazione Italiana di Metallurgia.Google Scholar
  116. Smith, C. S. (1965). The interpretation of microstructures of metallic artifacts. In W. J. Young (Ed.), Applications of science in the examination of works of art (pp. 20–52). Boston: Museum of Fine Arts.Google Scholar
  117. Smith, C. S. (1968). Metallographic study of early artifacts made from native copper. Actes du XI e Congrès International d’Histoire des Sciences, Warsaw 6, pp. 237–243.Google Scholar
  118. Smith, C. S. (1969). Analysis of the copper bead from Ali Kosh. In F. Hole, K. V. Flannery, & J. A. Neely (Eds.), Prehistory and human ecology of the Deh Luran Plain: An early village sequence from Khuzistan, Iran (pp. 427–428). Ann Arbor: University of Michigan.Google Scholar
  119. Stech, T., & Pigott, V. C. (1986). The metals trade in southwest Asia in the third millennium B.C. Iraq, 48, 39–64.Google Scholar
  120. Stöllner, Th. (2005). Early mining and metallurgy on the Iranian Plateau. In Ü. Yalçin (Ed.), Anatolian Metal III. Der Anschnitt, Beiheft 18 (pp. 191–207). Bochum: Deutsches Bergbau-Museum.Google Scholar
  121. Stöllner, Th., Slotta, R., & Vatandoust, A. (Eds.). (2004). Persiens Antike Pracht: Bergbau–Handwerk–Archäologie. Katalog der Ausstellung. Bochum: Deutsches Bergbau-Museum.Google Scholar
  122. Tadmor, M., Kedem, D., Begemann, F., Hauptmann, A., Pernicka, E., & Schmitt-Strecker, S. (1995). The Nahal Mishmar hoard from the Judean desert: Technology, composition, and provenance. Atiqot, 27, 96–148.Google Scholar
  123. Thornton, C. P. (2007). Of brass and bronze in prehistoric southwest Asia. In S. La Niece, D. Hook, & P. T. Craddock (Eds.), Metals and mines: Studies in archaeometallurgy (pp. 189–201). London: Archetype Publications.Google Scholar
  124. Thornton, C. P. (2009a). The Chalcolithic and Early Bronze Age metallurgy of Tepe Hissar, northeast Iran: A challenge to the Levantine paradigm. PhD dissertation. Department of Anthropology, University of Pennsylvania.Google Scholar
  125. Thornton, C. P. (2009b). The rise of arsenical copper in southeastern Iran. Iranica Antiqua 45 (in press).Google Scholar
  126. Thornton, C.P., & Rehren, Th. (2009). An unusual refractory crucible from fourth millennium Tepe Hissar, northeast Iran. Journal of Archaeological Science (in press).Google Scholar
  127. Thornton, C. P., & Lamberg-Karlovsky, C. C. (2004a). Tappeh Yahya und die prähistorische Metallurgie in Südostiran. In T. Stöllner, R. Slotta, & A. Vatandoust (Eds.), Persiens antike Pracht: Bergbau–Handwerk–Archäologie. Katalog der Ausstellung (pp. 264–273). Bochum: Deutsches Bergbau-Museum.Google Scholar
  128. Thornton, C. P., & Lamberg-Karlovsky, C. C. (2004b). A new look at the prehistoric metallurgy of southeastern Iran. Iran, 42, 61–76.Google Scholar
  129. Thornton, C. P., Lamberg-Karlovsky, C. C., Liezers, M., & Young, S. M. M. (2002). On pins and needles: Tracing the evolution of copper-base alloying at Tepe Yahya, Iran, via ICP-MS analysis of common-place items. Journal of Archaeological Science, 29(12), 1451–1460.CrossRefGoogle Scholar
  130. Thornton, C. P., Lamberg-Karlovsky, C. C., Liezers, M., & Young, S. M. M. (2005). Stech and Pigott revisited: New evidence for the origin of tin bronze in light of chemical and metallographic analyses of the metal artifacts from Tepe Yahya, Iran. In H. Kars & E. Burke (Eds.), Proceedings of the 33rd International Symposium on Archaeometry, 22–26 April 2002, Amsterdam. Geoarchaeological and Bioarchaeological Studies 3 (pp. 395–398). Amsterdam: Vrije Universiteit.Google Scholar
  131. Thornton, C. P., & Rehren, Th. (2007). Report on the first Iranian prehistoric slag workshop. Iran, 45, 315–318.Google Scholar
  132. Thornton, C. P., Rehren, Th., & Pigott, V. C. (2009). The intentional production of speiss (iron arsenide) during the Early Bronze Age in Iran. Journal of Archaeological Science, 36(2), 308–316.CrossRefGoogle Scholar
  133. Trigger, B. G. (1984). Archaeology at the crossroads: What’s new? Annual Review of Anthropology, 13, 275–300.CrossRefGoogle Scholar
  134. Voigt, M. M., & Dyson, R. H. J. (1992). The chronology of Iran, ca. 8000–2000. In R. W. Ehrich (Ed.), Chronologies in Old World archaeology (pp. 122–178). Chicago: University of Chicago Press.Google Scholar
  135. Weeks, L. R. (2003). Early metallurgy of the Persian Gulf. Brill Academic Publishers, Inc: Boston.Google Scholar
  136. Weeks, L. (2008). The 2007 early Iranian metallurgy workshop at the University of Nottingham. Iran, 46, 335–345.Google Scholar
  137. Weisgerber, G. (2006). The mineral wealth of ancient Arabia and its use I: Copper mining and smelting at Feinan and Timna–comparison and evaluation of techniques, production, and strategies. Arabian Archaeology and Epigraphy, 17, 1–30.CrossRefGoogle Scholar
  138. Weisgerber, G., & Hauptmann, A. (1988). Early copper mining and smelting in Palestine. In R. Maddin (Ed.), The beginning of the use of metals and alloys (pp. 52–62). Cambridge, MA: MIT.Google Scholar
  139. Wertime, T. A. (1964). Man’s first encounters with metallurgy. Science, 146, 1257–1267.CrossRefGoogle Scholar
  140. Wertime, T. A. (1968). A metallurgical expedition through the Persian desert. Science, 159, 927–935.CrossRefGoogle Scholar
  141. Wertime, T. A. (1973). The beginnings of metallurgy: A new look. Science, 182, 875–887.CrossRefGoogle Scholar
  142. Wilber, D. N. (1963). Iran: Past and present. Princeton, NJ: Princeton University Press.Google Scholar
  143. Yalçin, Ü. (1998). Der Keulenkopf von Can Hasan (TR): naturwissenschaftliche Untersuchung und neue Interpretation. In Th. Rehren, A. Hauptmann, & J. D. Muhly (Eds.), Metallurgica Antiqua. Der Anschnitt, Beiheft 8 (pp. 279–289). Bochum: Deutsches Bergbau-Museum.Google Scholar
  144. Yener, K. A. (2000). Domestication of metals. Leiden: Brill.Google Scholar
  145. Zagarell, A. (1982). The prehistory of the northeast Bakhtiy-ar-i mountains, Iran: The rise of a highland way of life. Beihefte zum Tuebinger Atlas des Vorderen Orients Nr. 42. Wiesbaden: Reichert.Google Scholar
  146. Zwicker, U. (1991). Natural copper-arsenic alloy and smelted arsenic bronzes in early metal production. In J.-P. Mohen & C. Eluère (Eds.), Découverte du métal (pp. 331–340). Paris: Picard.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of AnthropologyUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations