The Journal of Technology Transfer

, Volume 43, Issue 1, pp 96–119 | Cite as

Does technological diversification spur university patenting?

  • Manuel Acosta
  • Daniel Coronado
  • M. Ángeles Martínez


Technological diversity, or the breadth of technological knowledge embedded in patented inventions, refers to the range of different technological or economic fields covered by a patent. This paper explores the role of diversification scope in encouraging the production of new patents in European universities by including the diversification scope as an explanatory variable in a patent production function. We hypothesize that the more diversified the patented technology in the university, the greater the production of new patents in subsequent periods. To test this hypothesis we rely on a cross-sectional sample of patents owned by 141 European universities across Europe in 2001–2004. Our empirical findings support the hypothesis of diversification, which means that the production of new patents can be spurred by promoting or stimulating greater levels of technological diversification. This result is robust to both the use of various measures of diversification and to different econometric specifications.


University patenting Technological diversification Entropy index Multilevel negative binomial model Knowledge production function European universities 

JEL Classification

O31 O32 



The authors highly appreciate the helpful comments of an anonymous Reviewer, which significantly contributed to improving the clarity and quality of the paper. We are also grateful for the financial assistance provided by Junta de Andalucía.


  1. Acosta, M., Coronado, D., & Flores, E. (2011). University spillovers and new business location in high-technology sectors: Spanish evidence. Small Business Economics, 36(3), 365–376.CrossRefGoogle Scholar
  2. Acosta, M., Coronado, D., León, D., & Martínez, M. A. (2009). The production of university technological knowledge in European regions: Evidence from patent data. Regional Studies, 43(9), 1167–1181.CrossRefGoogle Scholar
  3. Anselin, L., Varga, A., & Acs, Z. J. (1997). Local geographic spillovers between university research and high technology innovations. Journal of Urban Economics, 42(3), 422–448.CrossRefGoogle Scholar
  4. Anselin, L., Varga, A., & Acs, Z. J. (2000). Geographical spillovers and university research: A spatial econometric perspective. Growth and Change, 31(4), 501–515.CrossRefGoogle Scholar
  5. Antweiler, W. (2001). Nested random effects estimation in unbalanced panel data. Journal of Econometrics, 101(2), 295–313.CrossRefGoogle Scholar
  6. Audretsch, D. B., & Lehmann, E. E. (2005). Does the knowledge spillover theory of entrepreneurship hold for regions? Research Policy, 34(8), 1191–1202.CrossRefGoogle Scholar
  7. Azagra-Caro, J. M. (2014). Determinants of national patent ownership by public research organisations and universities. The Journal of Technology Transfer, 39(6), 898–914.CrossRefGoogle Scholar
  8. Azagra-Caro, J. M., Carayol, N., & Llerena, P. (2006a). Patent production at a European Research University: Exploratory evidence at the laboratory level. Journal of Technology Transfer, 31(3), 257–268.CrossRefGoogle Scholar
  9. Azagra-Caro, J. M., Fernández-de-Lucio, I., & Gutiérrez-Gracia, A. (2003). University patents: Output and input indicators…of what? Research Evaluation, 12(1), 5–16.CrossRefGoogle Scholar
  10. Azagra-Caro, J. M., Yegros-Yegros, A., & Archontakis, F. (2006b). What do university patent routes indicate at regional level? Scientometrics, 66(1), 219–230.CrossRefGoogle Scholar
  11. Azoulay, P., Ding, W., & Stuart, T. (2007). The determinants of faculty patenting behavior: Demographics or opportunities? Journal of Economic Behavior & Organization, 63(4), 599–623.CrossRefGoogle Scholar
  12. Baldini, N., Grimaldi, R., & Sobrero, M. (2006). Institutional changes and the commercialization of academic knowledge: A study of Italian universities’ patenting activities between 1965 and 2002. Research Policy, 35(1), 518–532.CrossRefGoogle Scholar
  13. Belkhodja, O., & Landry, R. (2007). The Triple-Helix collaboration: Why do researchers collaborate with industry and the government? What are the factors that influence the perceived barriers? Scientometrics, 70(2), 301–332.CrossRefGoogle Scholar
  14. Bercovitz, J., & Feldmann, M. (2006). Entrepreneurial universities and technology transfer: A conceptual framework for understanding knowledge-based economic development. Journal of Technology Transfer, 31(1), 175–188.CrossRefGoogle Scholar
  15. Bonaccorsi, A., Colombo, M. G., Guerini, M., & Rossi-Lamastra, C. (2014). The impact of local and external university knowledge on the creation of knowledge-intensive firms: Evidence from the Italian case. Small Business Economics, 43(2), 261–287.CrossRefGoogle Scholar
  16. Breschi, S., Lissoni, F., & Malerba, M. (2003). Knowledge-relatedness in firm technological diversification. Research Policy, 32(1), 69–87.CrossRefGoogle Scholar
  17. Breschi, S., Lissoni, F., & Montobbio, F. (2007). The scientific productivity of academic inventors: New evidence from Italian data. Economics of Innovation and New Technology, 16(2), 101–118.CrossRefGoogle Scholar
  18. Brown, R. (1992). Managing the “S” curve of innovation. Journal of Consumer Marketing, 9(1), 61–72.CrossRefGoogle Scholar
  19. Cameron, A., & Trivedi, P. (1998). Regression analysis of count data. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  20. Cameron, A. C., & Trivedi, P. K. (2009). Microeconomics using stata. Lakeway Drive, TX: Stata Press Books.Google Scholar
  21. Carayol, N. (2007). Academic incentives, research organization and patenting at a large French university. Economics of Innovation and New Technology, 16(2), 119–138.CrossRefGoogle Scholar
  22. Carlsson, B., Acs, Z. J., Audretsch, D. B., & Braunerhjelm, P. (2009). Knowledge creation, entrepreneurship, and economic growth: A historical review. Industrial and Corporate Change, 18(6), 1193–1229.CrossRefGoogle Scholar
  23. Carlsson, B., & Fridh, A. C. (2002). Technology transfer in United States universities. Journal of Evolutionary Economics, 12(1–2), 199–232.CrossRefGoogle Scholar
  24. Casper, S. (2013). The spill-over theory reversed: The impact of regional economies on the commercialization of university science. Research Policy, 42(8), 1313–1324.CrossRefGoogle Scholar
  25. Chen, C. S., & Liu, C. H. (2012). Impact of network position and knowledge diversity on knowledge creation: The empirical setting of research communities. Canadian Journal of Administrative Sciences, 29(4), 297–309.CrossRefGoogle Scholar
  26. Chiesa, V., & Piccaluga, A. (2000). Exploitation and diffusion of public research: The case of academic spin-off companies in Italy. R&D Management, 30(4), 329–340.CrossRefGoogle Scholar
  27. Chiu, Y.-C., Lai, H.-C., Liaw, Y.-C., & Lee, T.-Y. (2010). Technological scope: Diversified or specialized. Scientometrics, 82(1), 37–58.CrossRefGoogle Scholar
  28. Coupé, T. (2003). Science is golden: Academic R&D and university patents. Journal of Technology Transfer, 28(1), 31–46.CrossRefGoogle Scholar
  29. Crespi, G., D’Este, P., Fontana, R., & Geuna, A. (2011). The impact of academic patenting on university research and its transfer. Research Policy, 40(1), 55–68.CrossRefGoogle Scholar
  30. Czarnitzki, D., Hussinger, K., & Schneider, C. (2011). Commercializing academic research: The quality of faculty patenting. Industrial and Corporate Change, 20(5), 1403–1437.CrossRefGoogle Scholar
  31. Dai, Y., Popp, D., & Bretschneider, S. (2005). Institutions and intellectual property: The influence of institutional forces on university patenting. Journal of Policy Analysis and Management, 24(3), 579–598.CrossRefGoogle Scholar
  32. Di Gregorio, D., & Shane, S. (2003). Why do some universities generate more start-ups than others? Research Policy, 32(2), 209–227.CrossRefGoogle Scholar
  33. Djokovic, D., & Souitaris, V. (2008). Spinouts from academic institutions: A literature review with suggestions for further research. Journal of Technology Transfer, 33(3), 225–247.CrossRefGoogle Scholar
  34. Etzkowitz, H. (2003). Research groups as “quasi-firms”: The invention of the entrepreneurial university. Research Policy, 32(1), 109–121.CrossRefGoogle Scholar
  35. Etzkowitz, H., Webster, A., Gebhardt, C., & Terra, B. R. C. (2000). The future of the university and the university of the future: Evolution of ivory tower to entrepreneurial paradigm. Research Policy, 29(2), 313–330.CrossRefGoogle Scholar
  36. Etzkowitz, H., & Zhou, C. (2006). Triple Helix twins: Innovation and sustainability. Science and Public Policy, 33(1), 77–83.CrossRefGoogle Scholar
  37. Feldman, M. P., & Florida, R. (1994). The geographic sources of innovation: Technological infrastructure and product innovation in the United States. Annals of the Association of American Geographers, 84(2), 210–229.CrossRefGoogle Scholar
  38. Fischer, M., & Varga, A. (2003). Spatial knowledge spillovers and university research: Evidence from Austria. Annals of Regional Science, 37(2), 303–322.CrossRefGoogle Scholar
  39. Foltz, J. D., Barham, B., & Kim, K. (2000). Universities and agricultural biotechnology patent production. Agribusiness, 16(1), 82–95.CrossRefGoogle Scholar
  40. Foltz, J. D., Kim, K., & Barham, B. (2003). A dynamic analysis of university agricultural biotechnology patent production. American Journal of Agricultural Economics, 85(1), 187–197.CrossRefGoogle Scholar
  41. Franzoni, C. (2009). Do scientists get fundamental research ideas by solving practical problems? Industrial and Corporate Change, 18(4), 671–699.CrossRefGoogle Scholar
  42. Franzoni, C., & Scellato, G. (2011). Academic patenting and the consequences for scientific research. Australian Economic Review, 44(1), 95–101.CrossRefGoogle Scholar
  43. Friedman, J., & Silberman, J. (2003). University technology transfer: Do incentives, management, and location matter? Journal of Technology Transfer, 28(1), 17–30.CrossRefGoogle Scholar
  44. Gambardella, A., & Torrisi, S. (1998). Does technological convergence imply convergence in markets? Evidence from the electronics industry. Research Policy, 27(5), 445–463.CrossRefGoogle Scholar
  45. García-Vega, M. (2006). Does technological diversification promote innovation?: An empirical analysis for European firms. Research Policy, 35(2), 230–246.CrossRefGoogle Scholar
  46. Geuna, A., & Nesta, L. J. J. (2006). University patenting and its effects on academic research: The emerging European evidence. Research Policy, 35(6), 790–807.CrossRefGoogle Scholar
  47. Geuna, A., & Rossi, F. (2011). Changes to university IPR regulations in Europe and the impact on academic patenting. Research Policy, 40(8), 1068–1076.CrossRefGoogle Scholar
  48. Granstrand, O. (1998). Towards a theory of the technology-based firm. Research Policy, 27(5), 465–489.CrossRefGoogle Scholar
  49. Greene, W. H. (2012). Econometric analysis (7th ed.). Boston: Prentice Hall.Google Scholar
  50. Griliches, Z. (1979). Issues in assessing the contribution of research and development to productivity growth. Bell Journal of Economics, 10(1), 92–116.CrossRefGoogle Scholar
  51. Gurmu, S., Black, G. C., & Stephan, P. E. (2010). The knowledge production function for university patenting. Economic Inquiry, 48(1), 192–213.CrossRefGoogle Scholar
  52. Hall, B. H., & Harhoff, D. (2012). Recent research on the economics of patents. Working Paper No. w17773. National Bureau of Economic Research.Google Scholar
  53. Hall, B. H., Jaffe, A. B., & Trajtenberg, M. (2001). The NBER Patent Citation Data File: Lessons, Insights and Methodological Tools, NBER Working Paper 8498.Google Scholar
  54. Henderson, R., & Cockburn, I. (1996). Scale, scope, and spillovers: The determinants of research productivity in drug discovery. RAND Journal of Economics, 27(1), 32–59.CrossRefGoogle Scholar
  55. Henderson, R., Jaffe, A. B., & Trajtenberg, M. (1998). Universities as a source of commercial technology: A detailed analysis of university patenting, 1965–1988. Review of Economics and Statistics, 80(1), 119–127.CrossRefGoogle Scholar
  56. Huang, K. G., & Murray, F. E. (2009). Does patent strategy shape the long-run supply of public knowledge? Evidence from human genetics. Academy of Management Journal, 52(6), 1193–1221.CrossRefGoogle Scholar
  57. Hunter, E. M., Perry, S. J., & Currall, S. C. (2011). Inside multi-disciplinary science and engineering research centers: The impact of organizational climate on invention disclosures and patents. Research Policy, 40(9), 1226–1239.CrossRefGoogle Scholar
  58. Jacquemin, A. P., & Berry, C. H. (1979). Entropy measure of diversification and corporate growth. The Journal of Industrial Economics, 27(4), 359–369.CrossRefGoogle Scholar
  59. Jaffe, A. B. (1989). Real effects of academic research. American Economic Review, 79(5), 957–970.Google Scholar
  60. Jaffe, A. B. (2000). The US patent system in transition: Policy innovation and the innovation process. Research Policy, 29(4), 531–557.CrossRefGoogle Scholar
  61. Lerner, J. (1994). The importance of patent scope: An empirical analysis. The RAND Journal of Economics, 25(2), 319–333.Google Scholar
  62. Lerner, J. (1995). Patenting in the shadow of competitors. Journal of Law and Economics, 38, 463–495.CrossRefGoogle Scholar
  63. Leten, B., Belderbos, R., & Van Looy, B. (2007). Technological diversification, coherence, and performance of firms. Journal of Product Innovation Management, 24(6), 567–579.CrossRefGoogle Scholar
  64. Lettl, C., Rost, K., & Von Wartburg, I. (2009). Why are some independent inventors ‘heroes’ and others ‘hobbyists’? The moderating role of technological diversity and specialization. Research Policy, 38(2), 243–254.CrossRefGoogle Scholar
  65. Lin, B.-W., Chen, C.-J., & Wu, H.-L. (2006). Patent portfolio diversity, technology strategy, and firm value. IEEE Transactions on Engineering Management, 53(1), 17–26.CrossRefGoogle Scholar
  66. Link, A. N., Siegel, D. S., & Bozeman, B. (2007). An empirical analysis of the propensity of academics to engage in informal university technology transfer. Industrial and Corporate Change, 16(4), 641–655.CrossRefGoogle Scholar
  67. Lissoni, F. (2012). Academic patenting in Europe: An overview of recent research and new perspectives. World Patent Information, 34(3), 197–205.CrossRefGoogle Scholar
  68. Lissoni, F., Llerena, P., McKelvey, M., & Sanditov, B. (2008). Academic patenting in Europe: New evidence from the KEINS database. Research Evaluation, 16(2), 87–102.CrossRefGoogle Scholar
  69. Lissoni, F., Pezzoni, M., Poti, B., & Romagnosi, S. (2013). University autonomy, the professor privilege and academic patenting: Italy, 1996–2007. Industry and Innovation, 20(5), 399–421.CrossRefGoogle Scholar
  70. Merges, R. P., & Nelson, R. R. (1990). On the complex economics of patent scope. Columbia Law Review, 90(4), 839–916.CrossRefGoogle Scholar
  71. Moorthy, S., & Polley, D. E. (2010). Technological knowledge breadth and depth: Performance impacts. Journal of Knowledge Management, 14(3), 359–377.CrossRefGoogle Scholar
  72. Moulton, B. R. (1990). An illustration of a pitfall in estimating the effects of aggregate variables on micro units. The Review of Economics and Statistics, 72(2), 334–338.CrossRefGoogle Scholar
  73. Mowery, D. C., Nelson, R. R., Sampat, B. N., & Ziedonis, A. A. (2001). The growth of patenting and licensing by US universities: An assessment of the effects of the Bayh–Dole act of 1980. Research Policy, 30(1), 99–119.CrossRefGoogle Scholar
  74. Mustar, P., Renault, M., Colombo, M. G., Piva, E., Fontes, M., Lockett, A., et al. (2006). Conceptualising the heterogeneity of research-based spin-offs: A multi-dimensional taxonomy. Research Policy, 35(2), 289–308.CrossRefGoogle Scholar
  75. Nerkar, A., & Shane, S. (2007). Determinants of invention commercialization: An empirical examination of academically sourced inventions. Strategic Management Journal, 28(11), 1155–1166.CrossRefGoogle Scholar
  76. O’Shea, R. P., Chugh, H., & Allen, T. J. (2008). Determinants and consequences of university spinoff activity: A conceptual framework. Journal of Technology Transfer, 33(6), 653–667.CrossRefGoogle Scholar
  77. Payne, A., & Siow, A. (2003). Does federal research funding increase university research output? Advances in Economic Analysis & Policy, 3(1), Article 1.Google Scholar
  78. Pinheiro, J. C., & Chao, E. C. (2006). Efficient Laplacian and adaptive Gaussian quadrature algorithms for multilevel generalized linear mixed models. Journal of Computational and Graphical Statistics, 15, 58–81.CrossRefGoogle Scholar
  79. Quintana-García, C., & Benavides-Velasco, C. A. (2008). Innovative competence, exploration and exploitation: The influence of technological diversification. Research Policy, 37(3), 492–507.CrossRefGoogle Scholar
  80. Rabe-Hesketh, S., & Skrondal, A. (2012). Multilevel and longitudinal modeling using stata (3rd ed.). College Station, TX: Stata Press.Google Scholar
  81. Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis methods. Thousand Oaks, CA: Sage.Google Scholar
  82. Rizzo, U., & Ramaciotti, L. (2014). The determinants of academic patenting by Italian universities. Technology Analysis & Strategic Management, 26(4), 469–483.CrossRefGoogle Scholar
  83. Rosell, C., & Agrawal, A. (2009). Have university knowledge flows narrowed?: Evidence from patent data. Research Policy, 38(1), 1–13.CrossRefGoogle Scholar
  84. Rothaermel, F. T., Agung, S. D., & Jiang, L. (2007). University entrepreneurship: A taxonomy of the literature. Industrial and Corporate Change, 16(4), 691–791.CrossRefGoogle Scholar
  85. Saragossi, S., & de la Potterie, B. V. P. (2003). What patent data reveal about universities: The case of Belgium. The Journal of Technology Transfer, 28(1), 47–51.CrossRefGoogle Scholar
  86. Schartinger, D., Rammer, C., Fischer, M. M., & Fröhlich, J. (2002). Knowledge interactions between universities and industry in Austria: Sectoral patterns and determinants. Research Policy, 31(3), 303–328.CrossRefGoogle Scholar
  87. Schmoch, U., Laville, F., Patel, P., & Frietsch, R. (2003). Linking technology areas to industrial sectors, Final Report to the European Commission, DG Research.Google Scholar
  88. Shane, S. (2001). Technology regimes and new firm formation. Management Science, 47(9), 1173–1190.CrossRefGoogle Scholar
  89. Siegel, D. S., Waldman, D. A., Atwater, L. E., & Link, A. N. (2004). Toward a model of the effective transfer of scientific knowledge from academicians to practitioners: Qualitative evidence from the commercialization of university technologies. Journal of Engineering and Technology Management, 21(1), 115–142.CrossRefGoogle Scholar
  90. Stephan, P. E., Gurmu, S., Sumell, A. J., & Black, G. (2007). Who’s patenting in the university? Evidence from the survey of doctorate recipients. Economics of Innovation and New Technology, 16(2), 71–99.CrossRefGoogle Scholar
  91. Sterckx, S. (2011). Patenting and licensing of university research: Promoting innovation or undermining academic values? Science and Engineering Ethics, 17(1), 45–64.CrossRefGoogle Scholar
  92. Tantiyaswasdikul, K. (2012). The impact of the breadth of patent protection and the Japanese university patents. International Journal of Innovation, Management and Technology, 3(6), 754–758.Google Scholar
  93. Toh, P. K. (2014). Chicken, or the egg, or both? The interrelationship between a firm’s inventor specialization and scope of technologies. Strategic Management Journal, 35(5), 723–738.CrossRefGoogle Scholar
  94. Van Looy, B., Callaert, J., & Debackere, K. (2006). Publication and patent behavior of academic researchers: Conflicting, reinforcing or merely co-existing? Research Policy, 35(4), 596–608.CrossRefGoogle Scholar
  95. Van Looy, B., Landoni, P., Callaert, J., van Pottelsberghe, B., Sapsalis, E., & Debackere, K. (2011). Entrepreneurial effectiveness of European universities: An empirical assessment of antecedents and trade-offs. Research Policy, 40(4), 553–564.CrossRefGoogle Scholar
  96. Varga, A. (1998). University research and regional innovation: A spatial econometric analysis of academic technology transfers. Boston, MA: Kluwer.CrossRefGoogle Scholar
  97. Wade, M. R., & Gravill, J. I. (2003). Diversification and performance of Japanese IT subsidiaries: A resource-based view. Information & Management, 40(4), 305–316.CrossRefGoogle Scholar
  98. Woodward, D., Figueiredo, O., & Guimaraes, P. (2006). Beyond the Silicon Valley: University R&D and high-technology location. Journal of Urban Economics, 60(1), 15–32.CrossRefGoogle Scholar
  99. Wooldridge, J. M. (2003). Cluster-sample methods in applied econometrics. American Economic Review, 93(2), 133–138.CrossRefGoogle Scholar
  100. Zahra, S. A., Van de Velde, E., & Larrañeta, B. (2007). Knowledge conversion capability and the performance of corporate and university spin-offs. Industrial and Corporate Change, 16(4), 569–608.CrossRefGoogle Scholar
  101. Zucker, L. G., Darby, M. R., & Brewer, M. B. (1998). Intellectual human capital and the birth of U.S. biotechnology enterprises. American Economic Review, 88(1), 290–306.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Manuel Acosta
    • 1
  • Daniel Coronado
    • 1
  • M. Ángeles Martínez
    • 1
  1. 1.Facultad de Ciencias Económicas y EmpresarialesUniversity of CadizCádizSpain

Personalised recommendations