Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Pathwise Asymptotics for Volterra Type Stochastic Volatility Models

  • 9 Accesses

Abstract

We study stochastic volatility models in which the volatility process is a positive continuous function of a continuous Volterra stochastic process. We state some pathwise large deviation principles for the scaled log-price.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Azencott, R.: Grande Déviations et applications. In: Azencott, R., Guivarc’h, Y., Gundy, R.F. (eds.) École d’été de Probabilités de St. Flour VIII, L.N.M, vol. 774. Springer, Berlin (1980)

  2. 2.

    Baxter, J.R., Jain, N.C.: An approximation condition for large deviations and some applications. In: Bergelson, V., March, P., Rosenblatt, J. (eds.) Convergence in Ergodic Theory and Probability, vol. 5, pp. 63–90. Ohio State University Mathematical Research Institute Publications, Columbus (1996)

  3. 3.

    Berlinet, A., Thomas-Agnan, C.: Reproducing Kernel Hilbert Spaces in Probability and Statistics. Kluwer Academic Publishers, Dordrecht (2004)

  4. 4.

    Borkar, S.V.: Probability Theory. Springer, Berlin (1995)

  5. 5.

    Caramellino, L., Pacchiarotti, B., Salvadei, S.: Large deviation approaches for the numerical computation of the hitting probability for Gaussian processes. Methodol. Comput. Appl. Probab. 17(2), 383–401 (2015)

  6. 6.

    Chaganty, N.R.: Large deviations for joint distributions and statistical applications. Sankhyā Indian J. Stat. 59(2), 147–166 (1997)

  7. 7.

    Chen, X., Li, W.V.: Quadratic functionals and small ball probabilities for the \(m\)-fold integrated Brownian motion. Ann. Probab. 31, 1052–1077 (2003)

  8. 8.

    Cheridito, P., Kawaguchi, H., Maejima, M.: Fractional Ornstein–Uhlenbeck processes. Electron. J. Probab. 8, 1–14 (2003)

  9. 9.

    Chiarini, A., Fischer, M.: On large deviations for small noise Itô processes. Adv. Appl. Probab. 46(4), 1126–1147 (2014)

  10. 10.

    Decreusefond, L., Üstünel, A.S.: Stochastic analysis of the fractional Brownian motion. Potential Anal. 10(2), 177–214 (1999)

  11. 11.

    Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Jones and Bartlett, Boston (1998)

  12. 12.

    Deuschel, J.D., Stroock, D.W.: Large Deviations. Academic Press, Boston (1989)

  13. 13.

    Forde, M., Zhang, H.: Asymptotics for rough stochastic volatility models. SIAM J. Financ. Math. 8, 114–145 (2017)

  14. 14.

    Gatheral, J., Jaisson, T., Rosenbaum, M.: Volatility is rough. Quant. Finance 18(6), 933–949 (2018)

  15. 15.

    Giorgi, F., Pacchiarotti, B.: Large deviations for conditional Volterra processes. Stoch. Anal. Appl. 35(2), 191–210 (2017)

  16. 16.

    Gulisashvili, A.: Analytically Tractable Stochastic Stock Price Models. Springer, Berlin (2012)

  17. 17.

    Gulisashvili, A.: Large deviation principle for Volterra type fractional stochastic volatility models. SIAM J. Financ. Math. 9(3), 1102–1136 (2018)

  18. 18.

    Gulisashvili, A.: Gaussian stochastic volatility models: scaling regimes, large deviations, and moment explosions. Stoch. Process. Appl. Available online, 18 October (2019). https://doi.org/10.1016/j.spa.2019.10.005

  19. 19.

    Gulisashvili, A., Viens, F., Zhang, X.: Small-time asymptotics for Gaussian self-similar stochastic volatility models. Appl. Math. Optim. (2018). https://doi.org/10.1007/s00245-018-9497-6

  20. 20.

    Gulisashvili, A., Viens, F., Zhang, X.: Extreme-strike asymptotics for general Gaussian stochastic volatility models. Ann. Finance 15(1), 59–101 (2018)

  21. 21.

    Hida, T., Hitsuda, M.: Gaussian processes. In: Translations of Mathematical Monographs, vol. 120. American Mathematical Society, Providence, RI (1993)

  22. 22.

    Hult, H.: Approximating some Volterra type stochastic integrals with applications to parameter estimation. Stoch. Process. Appl. 105(1), 1–32 (2003)

  23. 23.

    Macci, C., Pacchiarotti, B.: Exponential tightness for Gaussian processes with applications to some sequences of weighted means. Stochastics 89(2), 469–484 (2017)

  24. 24.

    Pacchiarotti, B.: Large deviations for generalized conditioned Gaussian processes and their bridges. Probab. Math. Stat. 39(1), 159–181 (2019)

  25. 25.

    Pacchiarotti, B., Pigliacelli, A.: Large deviations for conditionally Gaussian processes: estimates of level crossing probability. Mod. Stoch. Theory Appl. 5(4), 483–499 (2018)

  26. 26.

    Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Springer, Berlin (2004)

  27. 27.

    Sottinen, T., Viitasaari, L.: Stochastic analysis of Gaussian processes via Fredholm representation. Int. J. Stoch. Anal. 2016, 8694365 (2016)

  28. 28.

    Zhang, X.: Euler schemes and large deviations for stochastic Volterra equations with singular kernels. J. Differ. Equ. 244, 2226–2250 (2008)

Download references

Acknowledgements

The authors wish to thank the referee for her/his very useful comments which allowed us to improve the paper.

Author information

Correspondence to Barbara Pacchiarotti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cellupica, M., Pacchiarotti, B. Pathwise Asymptotics for Volterra Type Stochastic Volatility Models. J Theor Probab (2020). https://doi.org/10.1007/s10959-020-00992-4

Download citation

Keywords

  • Large deviations
  • Volterra type Gaussian processes
  • Conditional processes

Mathematics Subject Classification (2010)

  • 60F10
  • 60G15
  • 60G22