# Talagrand Inequality at Second Order and Application to Boolean Analysis

Article

## Abstract

This note is concerned with an extension, at second order, of an inequality on the discrete cube $$C_n=\{-\,1,1\}^n$$ (equipped with the uniform measure) due to Talagrand (Ann Probab 22:1576–1587, 1994). As an application, the main result of this note is a theorem in the spirit of a famous result from Kahn et al. (cf. Proceedings of 29th Annual Symposium on Foundations of Computer Science, vol 62. Computer Society Press, Washington, pp 68–80, 1988) concerning the influence of Boolean functions. The notion of the influence of a couple of coordinates $$(i,j)\in \{1,\ldots ,n\}^2$$ is introduced in Sect. 2, and the following alternative is obtained: For any Boolean function $$f\,:\, C_n\rightarrow \{0,1\}$$, either there exists a coordinate with influence at least of order $$(1/n)^{1/(1+\eta )}$$, with $$\, 0<\eta <1$$ (independent of f and n), or there exists a couple of coordinates $$(i,j)\in \{1,\ldots ,n\}^2$$ with $$i\ne j$$, with influence at least of order $$(\log n/n)^2$$. In Sect. 4, it is shown that this extension of Talagrand inequality can also be obtained, with minor modifications, for the standard Gaussian measure $$\gamma _n$$ on $${\mathbb {R}}^n$$; the obtained inequality can be of independent interest. The arguments rely on interpolation methods by semigroup together with hypercontractive estimates. At the end of the article, some related open questions are presented.

## Keywords

Boolean analysis Influences Hypercontractivity Functional inequalities

## Mathematics Subject Classification (2010)

60E15 60J25 06E30 28A12

## References

1. 1.
Bakry, D., Gentil, I., Ledoux, M.: Analysis and geometry of Markov diffusion operators. In: Grundlehren der Mathematischen Wissenschaften, vol. 348, (2014)Google Scholar
2. 2.
Ben-Or, M., Linial, N.: Collective Coin Flipping, p. 70. Randomness and Computation Academic Press, Cambridge (1990)Google Scholar
3. 3.
Bobkov, S., Götze, F., Houdré, C.: On Gaussian and Bernoulli covariance representations. Bernoulli 7(3), 439–451 (2001)
4. 4.
Bobkov, S., Götze, F., Sambale, H.: Higher order concentration of measure. Preprint, arXiv:1709.06838, (2017)
5. 5.
Boucheron, T., Lugosi, G., Massart, P.: Concentration Inequalities: A Nonasymptotic Theory of Independance. Oxford University Press, Oxford (2013)
6. 6.
Bouyrie, R.: Private communication. (2017)Google Scholar
7. 7.
Chatterjee, S.: Superconcentration and Related Topics. Springer, Cham (2014)
8. 8.
Cordero-Erausquin, D., Ledoux, M.: Hypercontractive measures, Talagrand’s inequality, and influences. In: Geometric Aspects of Functional Analysis, Lectures Notes in Mathematics, vol. 2050, pp. 169–189, (2012)Google Scholar
9. 9.
Diaconis, P., Saloff-Coste, L.: Logarithmic Sobolev inequalities for finite Markov chains. Ann. Probab. 6(3), 695–750 (1996)
10. 10.
Friedgut, E., Kalai, G.: Every monotone graph property has a sharp threshold. Proc. Am. Math. Soc. 124(10), 2993–3002 (1996)
11. 11.
Garban, Christophe, Steif, Jeffrey E.: Noise Sensitivity of Boolean Functions and Percolation. Institute of Mathematical Statistics Textbooks. Cambridge University Press, New York (2015)
12. 12.
Gross, L.: Logarithmic Sobolev inequalities. Am. J. Math. 97, 1061–1083 (1975)
13. 13.
Houdré, C., Perez-Abreu, V., Surgailis, D.: Interpolation, correlation identities, and inequalities for infinitely divisible variables. J. Fourier Anal. Appl. 4(6), 651–668 (1998)
14. 14.
Kahn, J., Kalai, G., Linial, N.: The influence of variables on Boolean functions. In: Proceedings of 29th Annual Symposium on Foundations of Computer Science, vol. 62, pp. 68–80. Computer Society Press, Washington, (1988)Google Scholar
15. 15.
Keller, N., Mossel, E.: Quantitative relationship between noise sensitivity and influences. Combinatorica 33, 45–71 (2013)
16. 16.
Keller, N., Mossel, E., Sen, A.: Geometric influences. Ann. Probab. 40(3), 1135–1166 (2012)
17. 17.
Ledoux, M.: L’algèbre de Lie des gradients itérés d’un générateur markovien - développements de moyenne et entropies. Ann. Sci. Ec. Norm. Super 28(4), 435–460 (1995)
18. 18.
Ledoux, M.: The concentration of measure phenomenon. In: Mathematical Surveys and Monographs, vol. 89, (2001)Google Scholar
19. 19.
Ledoux, M., Talagrand, M.: Probability in Banach Spaces. Isoperimetry and Processes. Springer, Berlin (2011)
20. 20.
Nelson, E.: The free markov field. J. Funct. Anal. 12, 211–227 (1973)
21. 21.
O’Donnell, R.: Analysis of Boolean functions. Cambridge University Press, New York (2014)
22. 22.
Oleszkiewicz, K.: Private communication. (2018)Google Scholar
23. 23.
Paouris, G., Valettas, P.: Dichotomies, structure, and concentration results. Preprint, arXiv:1708.05149, (2017)
24. 24.
Paouris, G., Valettas, P.: A gaussian small deviation inequality for convex functions. Ann. Probab. 46(3), 1141–1454 (2018)
25. 25.
26. 26.
Talagrand, M.: On Russo’s approximate zero-one law. Ann. Probab. 22, 1576–1587 (1994)
27. 27.
Tanguy, K.: Some superconcentration inequalities for extrema of stationary gaussian processes. Stat. Probab. Lett. 106, 239–246 (2015)
28. 28.
Tanguy, K.: Quelques inégalités de superconcentration: théorie et applications (in french). Ph.D. Thesis, Institute of Mathematics of Toulouse, Toulouse (2017)Google Scholar
29. 29.
Tanguy, K.: Non asymptotic variance bounds and deviation inequalities by optimal transport. Electron. J. Probab. 24(12), 1–18 (2019)