Limit Theorems for Cylindrical Martingale Problems Associated with Lévy Generators

  • David CriensEmail author


We prove limit theorems for cylindrical martingale problems associated with Lévy generators. Furthermore, we give sufficient and necessary conditions for the Feller property of well-posed problems with continuous coefficients. We discuss two applications. First, we derive continuity and linear growth conditions for the existence of weak solutions to infinite-dimensional stochastic differential equations driven by Lévy noise. Second, we derive continuity, local boundedness and linear growth conditions for limit theorems and the Feller property of weak solutions to stochastic partial differential equations driven by Wiener noise.


Cylindrical martingale problem Lévy generator Limit theorem Feller process Stochastic partial differential equation Jump-diffusion existence theorem 

Mathematics Subject Classification (2010)

60J25 60F05 60H15 



The author is grateful to the anonymous referees for many helpful comments.


  1. 1.
    Billingsley, P.: Convergence of Probability Measures. Wiley, London (1999)CrossRefGoogle Scholar
  2. 2.
    Brzeźniak, Z., Maslowski, B., Seidler, J.: Stochastic nonlinear beam equations. Probab. Theory Relat. Fields 132(1), 119–149 (2005)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Criens, D.: Cylindrical martingale problems associated with Lévy generators. J. Theor. Probab. 32(3), 1306–1359 (2019)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Da Prato, G., Flandoli, F., Priola, E., Röckner, M.: Strong uniqueness for stochastic evolution equations in Hilbert spaces perturbed by a bounded measurable drift. Ann. Probab. 41(5), 3306–3344 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Da Prato, G., Kwapien, S., Zabczyk, J.: Regularity of solutions of linear stochastic equations in Hilbert spaces. Stochastics 23(1), 1–23 (1988)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions, 2nd edn. Cambridge University Press, Cambridge (2014)CrossRefGoogle Scholar
  7. 7.
    Engel, K., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics. Springer, New York (2006)Google Scholar
  8. 8.
    Ethier, S., Kurtz, T.: Markov Processes: Characterization and Convergence. Wiley, London (2005)zbMATHGoogle Scholar
  9. 9.
    Filipović, D., Tappe, S., Teichmann, J.: Jump-diffusions in Hilbert spaces: existence, stability and numerics. Stochastics 82(5), 475–520 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gatarek, D., Goldys, B.: On weak solutions of stochastic equations in Hilbert spaces. Stoch. Stoch. Rep. 46(1–2), 41–51 (1994)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gawarecki, L., Mandrekar, V., Richard, P.: Existence of weak solutions for stochastic differential equations and martingale solutions for stochastic semilinear equations. Random Oper. Stoch. Equ. 7, 3 (1999)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. U.S. Government Printing Office (2001)Google Scholar
  13. 13.
    He, S., Wang, J., Yan, J.: Semimartingale Theory and Stochastic Calculus. Science Press, New York (1992)zbMATHGoogle Scholar
  14. 14.
    Jacod, J., Shiryaev, A.: Limit Theorems for Stochastic Processes, 2nd edn. Springer, Berlin (2003)CrossRefGoogle Scholar
  15. 15.
    Joffe, A., Metivier, M.: Weak convergence of sequences of semimartingales with applications to multitype branching processes. Adv. Appl. Probab. 18(1), 20–65 (1986)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kallenberg, O.: Foundations of Modern Probability. Springer, Berlin (1997)zbMATHGoogle Scholar
  17. 17.
    Kunze, M.: On a class of martingale problems on Banach spaces. Electr. J. Probab. 18(104), 1–30 (2013)MathSciNetGoogle Scholar
  18. 18.
    Kunze, M.: Perturbation of strong Feller semigroups and well-posedness of semilinear stochastic equations on Banach spaces. Stochastics 85(6), 960–986 (2013)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Lindvall, T.: Weak convergence of probability measures and random functions in the function space \(D[0, \infty )\). J. Appl. Probab. 10(1), 109–121 (1973)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Liu, W., Röckner, M.: Stochastic Partial Differential Equations: An Introduction. Springer, Berlin (2015)CrossRefGoogle Scholar
  21. 21.
    Maslowski, B., Seidler, J.: On sequentially weakly Feller solutions to SPDE’s. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 10(2), 69–78 (1999)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Métivier, M.: Semimartingales: A Course on Stochastic Processes. De Gruyter, Berlin (1982)CrossRefGoogle Scholar
  23. 23.
    Métivier, M., Nakao, S.: Equivalent conditions for the tightness of a sequence of continuous Hilbert valued martingales. Nagoya Math. J. 106, 113–119 (1987)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences. Springer, Berlin (2012)Google Scholar
  25. 25.
    Peszat, S., Zabczyk, J.: Stochastic Partial Differential Equations with Lévy Noise: An Evolution Equation Approach. Cambridge University Press, Cambridge (2007)CrossRefGoogle Scholar
  26. 26.
    Seidler, J.: Weak convergence of infinite-dimensional diffusions. Stoch. Anal. Appl. 15(3), 399–417 (1997)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Singh, T.: Introduction to Topology. Springer, Singapore (2019)CrossRefGoogle Scholar
  28. 28.
    Stroock, D.: Diffusion processes associated with Lévy generators. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 32(3), 209–244 (1975)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Stroock, D., Varadhan, S.: Multidimensional Diffusion Processes. Springer, Berlin (1979)zbMATHGoogle Scholar
  30. 30.
    Tao, T.: An Epsilon of Room, I: Real Analysis. American Mathematical Society, Providence (2010)zbMATHGoogle Scholar
  31. 31.
    Walsh, J.: Introduction to Stochastic Partial Differential Equations, pp. 265–439. Springer, Berlin (1986)Google Scholar
  32. 32.
    Werner, D.: Funktionalanalysis. Springer-Lehrbuch, 7th edn. Springer, Berlin (2011)CrossRefGoogle Scholar
  33. 33.
    Whitt, W.: Weak convergence of probability measures on the function space \(C[0, \infty )\). Ann. Math. Stat. 41(3), 939–944 (1970)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Xie, Y.: Limit theorems of Hilbert valued semimartingales and Hilbert valued martingale measures. Stoch. Process. Appl. 59(2), 277–293 (1995)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for MathematicsTechnical University of MunichMunichGermany

Personalised recommendations