Pathwise Uniqueness of Non-uniformly Elliptic SDEs with Rough Coefficients
- 97 Downloads
- 1 Citations
Abstract
In this paper, we review and improve pathwise uniqueness results for some types of one-dimensional stochastic differential equations (SDE) involving the local time of the unknown process. The diffusion coefficient of the SDEs we consider is allowed to vanish on a set of positive measure and is not assumed to be smooth. As opposed to various existing results, our arguments are mainly based on the comparison theorem for local time and the occupation time formula. We apply our pathwise uniqueness results to derive strong existence and other properties of solutions for SDEs with rough coefficients.
Keywords
Stochastic differential equations Pathwise uniqueness Comparison theorem for local times Local time of the unknownMathematics Subject Classification
60H10 60H60 60J55Notes
Acknowledgements
Financial support from the Alexander von Humboldt Foundation under the programme financed by the German Federal Ministry of Education and Research entitled German Research Chair No. 01DG15010 is gratefully acknowledged.
References
- 1.Bahlali, K., Mezerdi, B., Ouknine, Y.: Pathwise uniqueness and approximation of solutions of stochastic differential equations. Séminaire de Probabilité (Strasbourg) 32, 166–187 (1998)MathSciNetzbMATHGoogle Scholar
- 2.Barlow, M., Perkins, E.: One-dimensional stochastic differential equations involving a singular increasing process. Stochastics 12(3–4), 229–249 (1984)MathSciNetCrossRefGoogle Scholar
- 3.Benabdallah, M., Bouhadou, S., Ouknine, Y.: Balayage formula, local time and applications in stochastic differential equations. Bull. Sci. Math. 137, 387–417 (2013)MathSciNetCrossRefGoogle Scholar
- 4.Blei, S., Engelbert, H.-J.: One-dimensional stochastic differential equations with genegeneral and singular drift. Stoch. Proc. Appl. 123, 4337–4372 (2013)CrossRefGoogle Scholar
- 5.Champagnat, N., Jabin, P.-E.: Strong solutions to stochastic differential equations with rough coefficients. Probab. 46(3), 1498–1541 (2018)MathSciNetCrossRefGoogle Scholar
- 6.Engelbert, H., Schmidt, W.: Strong Markov continuous local martingales and solutions of one-dimensional stochastic differential equations (part I). Math. Nachr. 143, 167–184 (1989)MathSciNetCrossRefGoogle Scholar
- 7.Engelbert, H., Schmidt, W.: Strong Markov continuous local martingales and solutions of one-dimensional stochastic differential equations (parts II). Math. Nachr. 144, 241–281 (1989)MathSciNetCrossRefGoogle Scholar
- 8.Engelbert, H., Schmidt, W.: Strong Markov continuous local martingales and solutions of one-dimensional stochastic differential equations (part III). Math. Nachr. 151, 149–197 (1991)MathSciNetCrossRefGoogle Scholar
- 9.Engelbert, H.J., Schmidt, W.: On solutions of one-dimensional stochastic differential equations without drift. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 68(3), 287–314 (1985)MathSciNetCrossRefGoogle Scholar
- 10.Étoré, P., Martinez, M.: Time inhomogeneous stochastic differential equations involving the local time of the unknown process, and associated parabolic operators. Stoch. Proc. Appl. 128(8), 2642–2687 (2018)MathSciNetCrossRefGoogle Scholar
- 11.Fedrizzi, E., Flandoli, F.: Pathwise uniqueness and continuous dependence for SDEs with non-regular drift. Stochastics 83(3), 241–257 (2011)MathSciNetCrossRefGoogle Scholar
- 12.Harrison, J.M., Shepp, L.: On skew Brownian motion. Ann. Probab. 9(2), 309–313 (1981)MathSciNetCrossRefGoogle Scholar
- 13.Krylov, N.V., Röckner, M.: Strong solutions of stochastic equations with singular time dependent drift. Probab. Theory Relat. Fields 131, 154–196 (2005)MathSciNetCrossRefGoogle Scholar
- 14.Le Gall, J.-F.: Applications du temps local aux équations différentielle stochastiques unidimensionnelles. Séminaire de Probabilité (Strasbourg) 986, 15–31 (1983)zbMATHGoogle Scholar
- 15.Le Gall, J.-F.: One-dimensional stochastic differential equations involving the local time of the unknown process. In: Stochastic Analysis and Applications. Lecture Notes in Math, vol. 1095, pp. 51–82. Springer (1984)Google Scholar
- 16.Menoukeu-Pamen, O., Meyer-Brandis, T., Nilssen, T., Proske, F., Zhang, T.: A variational approach to the construction and Malliavin differentiability of strong solutions of SDEs. Math. Ann. 357(2), 761–799 (2013)MathSciNetCrossRefGoogle Scholar
- 17.Menoukeu-Pamen, O., Mohammed, S.-E.A.: Flows for singular stochastic differential equations with unbounded drifts. Preprint arXiv:1704.03682 (2017)
- 18.Mohammed, S.-E.A., Nilssen, T.K., Proske, F.N.: Sobolev differentiable stochastic flows for SDEs with singular coefficients: applications to the transport equation. Ann. Probab. 43(3), 1535–1576 (2015)MathSciNetCrossRefGoogle Scholar
- 19.Nakao, S.: On pathwise uniqueness and comparison of solutions of one-dimensional stochastic differential equations. Osaka J. Math. 20, 197–204 (1983)MathSciNetzbMATHGoogle Scholar
- 20.Ouknine, Y.: Généralisation d’un lemme de S. Nakao et applications. Stochastics 23(2), 149–157 (1988)MathSciNetCrossRefGoogle Scholar
- 21.Ouknine, Y.: Fonctions de semimartingales et applications aux équation ddifférentielle stochastiques. Stoch. Stoch. Rep. 28(2), 115–122 (1989)MathSciNetCrossRefGoogle Scholar
- 22.Ouknine, Y.: Temps local du produit et du sup de deux semimartingales. Séminaire de probabilit’es (Strasbourg) 24, 477–479 (1990)MathSciNetzbMATHGoogle Scholar
- 23.Ouknine, Y.: Quelques identités sur les temps locaux et unicité des solutions d’équations différentielle stochastique avec reflection. Stoch. Proc. Appl. 48(2), 335–340 (1993)MathSciNetCrossRefGoogle Scholar
- 24.Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, Volume 293 of Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 3. Springer, Berlin (1999)Google Scholar
- 25.Rutkowski, M.: Stochastic differential equations with singular drifts. Stat. Probab. Lett. 10(3), 225–229 (1990)MathSciNetCrossRefGoogle Scholar
- 26.Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, vol. 30. Princeton University Press, Princeton (1970)Google Scholar
- 27.Stroock, D., Yor, M.: Some remarkable martingales. Séminaire de Probabilité (Strasbourg) 850, 590–603 (1981)MathSciNetzbMATHGoogle Scholar
- 28.Veretenikov, A.Y.: On strong solutions and explicit formulas for solutions of stochastic integral equations. Math. USSR Sbornik 39(3), 387–403 (1981)CrossRefGoogle Scholar
- 29.Weinryb, S.: Etude d’une équation différentielle stochastique avec temps local. Séminaire de Probabilité (Strasbourg) 986, 72–77 (1983)MathSciNetzbMATHGoogle Scholar
- 30.Yamada, T., Watanabe, S.: On the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto Univ. 11, 155–167 (1971)MathSciNetCrossRefGoogle Scholar
- 31.Zvonkin, A.K.: A transformation of the phase space of a diffusion process that removes the drift. Mat. Sb. (N.S.) 93(135), 129–149 (1974)MathSciNetCrossRefGoogle Scholar