Journal of Theoretical Probability

, Volume 32, Issue 4, pp 1892–1908 | Cite as

Pathwise Uniqueness of Non-uniformly Elliptic SDEs with Rough Coefficients

  • Olivier Menoukeu-Pamen
  • Youssef Ouknine
  • Ludovic TangpiEmail author


In this paper, we review and improve pathwise uniqueness results for some types of one-dimensional stochastic differential equations (SDE) involving the local time of the unknown process. The diffusion coefficient of the SDEs we consider is allowed to vanish on a set of positive measure and is not assumed to be smooth. As opposed to various existing results, our arguments are mainly based on the comparison theorem for local time and the occupation time formula. We apply our pathwise uniqueness results to derive strong existence and other properties of solutions for SDEs with rough coefficients.


Stochastic differential equations Pathwise uniqueness Comparison theorem for local times Local time of the unknown 

Mathematics Subject Classification

60H10 60H60 60J55 



Financial support from the Alexander von Humboldt Foundation under the programme financed by the German Federal Ministry of Education and Research entitled German Research Chair No. 01DG15010 is gratefully acknowledged.


  1. 1.
    Bahlali, K., Mezerdi, B., Ouknine, Y.: Pathwise uniqueness and approximation of solutions of stochastic differential equations. Séminaire de Probabilité (Strasbourg) 32, 166–187 (1998)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Barlow, M., Perkins, E.: One-dimensional stochastic differential equations involving a singular increasing process. Stochastics 12(3–4), 229–249 (1984)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Benabdallah, M., Bouhadou, S., Ouknine, Y.: Balayage formula, local time and applications in stochastic differential equations. Bull. Sci. Math. 137, 387–417 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Blei, S., Engelbert, H.-J.: One-dimensional stochastic differential equations with genegeneral and singular drift. Stoch. Proc. Appl. 123, 4337–4372 (2013)CrossRefGoogle Scholar
  5. 5.
    Champagnat, N., Jabin, P.-E.: Strong solutions to stochastic differential equations with rough coefficients. Probab. 46(3), 1498–1541 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Engelbert, H., Schmidt, W.: Strong Markov continuous local martingales and solutions of one-dimensional stochastic differential equations (part I). Math. Nachr. 143, 167–184 (1989)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Engelbert, H., Schmidt, W.: Strong Markov continuous local martingales and solutions of one-dimensional stochastic differential equations (parts II). Math. Nachr. 144, 241–281 (1989)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Engelbert, H., Schmidt, W.: Strong Markov continuous local martingales and solutions of one-dimensional stochastic differential equations (part III). Math. Nachr. 151, 149–197 (1991)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Engelbert, H.J., Schmidt, W.: On solutions of one-dimensional stochastic differential equations without drift. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 68(3), 287–314 (1985)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Étoré, P., Martinez, M.: Time inhomogeneous stochastic differential equations involving the local time of the unknown process, and associated parabolic operators. Stoch. Proc. Appl. 128(8), 2642–2687 (2018)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Fedrizzi, E., Flandoli, F.: Pathwise uniqueness and continuous dependence for SDEs with non-regular drift. Stochastics 83(3), 241–257 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Harrison, J.M., Shepp, L.: On skew Brownian motion. Ann. Probab. 9(2), 309–313 (1981)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Krylov, N.V., Röckner, M.: Strong solutions of stochastic equations with singular time dependent drift. Probab. Theory Relat. Fields 131, 154–196 (2005)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Le Gall, J.-F.: Applications du temps local aux équations différentielle stochastiques unidimensionnelles. Séminaire de Probabilité (Strasbourg) 986, 15–31 (1983)zbMATHGoogle Scholar
  15. 15.
    Le Gall, J.-F.: One-dimensional stochastic differential equations involving the local time of the unknown process. In: Stochastic Analysis and Applications. Lecture Notes in Math, vol. 1095, pp. 51–82. Springer (1984)Google Scholar
  16. 16.
    Menoukeu-Pamen, O., Meyer-Brandis, T., Nilssen, T., Proske, F., Zhang, T.: A variational approach to the construction and Malliavin differentiability of strong solutions of SDEs. Math. Ann. 357(2), 761–799 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Menoukeu-Pamen, O., Mohammed, S.-E.A.: Flows for singular stochastic differential equations with unbounded drifts. Preprint arXiv:1704.03682 (2017)
  18. 18.
    Mohammed, S.-E.A., Nilssen, T.K., Proske, F.N.: Sobolev differentiable stochastic flows for SDEs with singular coefficients: applications to the transport equation. Ann. Probab. 43(3), 1535–1576 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Nakao, S.: On pathwise uniqueness and comparison of solutions of one-dimensional stochastic differential equations. Osaka J. Math. 20, 197–204 (1983)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Ouknine, Y.: Généralisation d’un lemme de S. Nakao et applications. Stochastics 23(2), 149–157 (1988)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Ouknine, Y.: Fonctions de semimartingales et applications aux équation ddifférentielle stochastiques. Stoch. Stoch. Rep. 28(2), 115–122 (1989)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Ouknine, Y.: Temps local du produit et du sup de deux semimartingales. Séminaire de probabilit’es (Strasbourg) 24, 477–479 (1990)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Ouknine, Y.: Quelques identités sur les temps locaux et unicité des solutions d’équations différentielle stochastique avec reflection. Stoch. Proc. Appl. 48(2), 335–340 (1993)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, Volume 293 of Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 3. Springer, Berlin (1999)Google Scholar
  25. 25.
    Rutkowski, M.: Stochastic differential equations with singular drifts. Stat. Probab. Lett. 10(3), 225–229 (1990)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, vol. 30. Princeton University Press, Princeton (1970)Google Scholar
  27. 27.
    Stroock, D., Yor, M.: Some remarkable martingales. Séminaire de Probabilité (Strasbourg) 850, 590–603 (1981)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Veretenikov, A.Y.: On strong solutions and explicit formulas for solutions of stochastic integral equations. Math. USSR Sbornik 39(3), 387–403 (1981)CrossRefGoogle Scholar
  29. 29.
    Weinryb, S.: Etude d’une équation différentielle stochastique avec temps local. Séminaire de Probabilité (Strasbourg) 986, 72–77 (1983)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Yamada, T., Watanabe, S.: On the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto Univ. 11, 155–167 (1971)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Zvonkin, A.K.: A transformation of the phase space of a diffusion process that removes the drift. Mat. Sb. (N.S.) 93(135), 129–149 (1974)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.African Institute for Mathematical SciencesBiriwaGhana
  2. 2.University of GhanaAccraGhana
  3. 3.Department of Mathematical SciencesInstitute for Financial and Actuarial MathematicsLiverpoolUK
  4. 4.Complex Systems Engineering and Human SystemsMohammed VI Polytechnic UniversityBen GuerirMorocco
  5. 5.Mathematics Department, FSSMCadi Ayyad UniversityMarrakeshMorocco
  6. 6.Department of Operations Research and Financial EngineeringPrinceton UniversityPrincetonUSA

Personalised recommendations