Journal of Theoretical Probability

, Volume 32, Issue 4, pp 1909–1924 | Cite as

Lévy Subordinators in Cones of Fuzzy Sets

  • Jan Schneider
  • Roman UrbanEmail author


The general problem of how to construct stochastic processes which are confined to stay in a predefined cone (in the one-dimensional but also multi-dimensional case also referred to as subordinators) is of course known to be of great importance in the theory and a myriad of applications. In this paper we see how this may be dealt with on the metric space of fuzzy sets/vectors: By first relating with each proper convex cone C in \(\mathbb {R}^{n}\) a certain cone of fuzzy vectors \(C^*\) and subsequently using some very specific Banach space techniques we have been able to produce as many pairs \((L^*_t, C^*)\) of fuzzy Lévy processes \(L^*_t\) and cones \(C^*\) of fuzzy vectors such that \(L^*_t\) are \(C^*\)-subordinators.


Lévy processes in Banach spaces K-positive fuzzy Lévy process Cone-subordinators Cones in Banach spaces Pettis integral Bochner integral Convex sets Fuzzy sets Fuzzy vectors Support function Hausdorff distance 

Mathematics Subject Classification (2010)

G0G51 60G20 46C05 


  1. 1.
    Applebaum, D.: Lévy Processes and Stochastic Calculus. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  2. 2.
    Bañuelos, R., DeBlassie, D.: The exit distribution of iterated Brownian motion in cones. Stoch. Process. Appl. 116(1), 36–69 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bañuelos, R., Smits, R.G.: Brownian motion in cones. Probab. Theory Relat. Fields 108(3), 299–319 (1997)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bochner, S.: Integration von Funktionen, deren Wert die Elemente eines Vektorraumes sind. Fund. Math. 20(1), 262–276 (1933)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bongiorno, E.G.: A note on fuzzy set-valued Brownian motion. Stat. Probab. Lett. 82(4), 827–832 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Davydov, Y., Molchanov, I., Zuyev, S.: Strictly stable distributions on convex cones. Electron. J. Probab. 13(11), 259–321 (2008)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Da Prato, G., Zabczyk, J.: Second Order Partial Differential Equations in Hilbert Spaces. London Mathematical Society Lecture Note Series, 293. Cambridge University Press, Cambridge (2002)Google Scholar
  8. 8.
    DeBlassie, D.: Brownian motion in a quasi-cone. Probab. Theory Relat. Fields 154(1–2), 127–148 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Diamond, P., Kloeden, P.: Metric spaces of fuzzy sets. Fuzzy Sets Syst. 35(2), 241–249 (1990)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Diamond, P., Kloeden, P.: Metric Spaces of Fuzzy Sets. World Scientific, Singapore (1994)zbMATHGoogle Scholar
  11. 11.
    Diamond, P., Kloeden, P.: Metric spaces of fuzzy sets. Fuzzy Sets Syst. 100(Supplement), 63–71 (1999)CrossRefGoogle Scholar
  12. 12.
    Feng, Y., Hu, L., Shu, H.: The variance and covariance of fuzzy random variables and their applications. Fuzzy Sets Syst. 120(2), 487–497 (2001)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Garbit, R., Raschel, K.: On the exit time from a cone for random walks with drift. Revista Matematica Iberoamericana 32(2), 511–532 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Gikhman, I.I., Skorohod, A.V.: The Theory of Stochastic Processes, vol. II. Springer, Berlin (1975)Google Scholar
  15. 15.
    Körner, R.: Linear models with random fuzzy variables. Dissertation, TU Bergakademie Freiburg (1997)Google Scholar
  16. 16.
    Krätschmer, V.: Some complete metrics on spaces of fuzzy subsets. Fuzzy Sets Syst. 130(3), 357–365 (2002)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Pérez-Abreu, A., Rocha-Arteaga, A.: On the Lévy–Khintchine representation of Lévy processes in cones of Banach spaces. Publ. Mat. Urug. 11, 41–55 (2006)MathSciNetGoogle Scholar
  18. 18.
    Pérez-Abreu, A., Rosiński, J.: Representation of infinitely divisible distributions on cones. J. Theor. Probab. 20(3), 535–544 (2007)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Sato, K.-I.: Łprocesses and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (2004)Google Scholar
  20. 20.
    Schneider, J., Urban, R.: A proof of Donsker’s invariance principle based on support functions of fuzzy random vectors. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 26(1), 27–42 (2018)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Viertl, R.: Statistical Methods for Fuzzy Data. Wiley, New York (2011)CrossRefGoogle Scholar
  22. 22.
    Yosida, K.: Functional Analysis, 3rd edn. Springer, New York (1971)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer Science and ManagementWroclaw University of Science and TechnologyWrocławPoland
  2. 2.Institute of MathematicsWroclaw UniversityWrocławPoland

Personalised recommendations