Journal of Theoretical Probability

, Volume 32, Issue 2, pp 898–906 | Cite as

A Smooth Transition from Wishart to GOE

  • Miklós Z. RáczEmail author
  • Jacob Richey


It is well known that an \(n \times n\) Wishart matrix with d degrees of freedom is close to the appropriately centered and scaled Gaussian orthogonal ensemble (GOE) if d is large enough. Recent work of Bubeck, Ding, Eldan, and Racz, and independently Jiang and Li, shows that the transition happens when \(d = \Theta ( n^{3} )\). Here we consider this critical window and explicitly compute the total variation distance between the Wishart and GOE matrices when \(d / n^{3} \rightarrow c \in (0, \infty )\). This shows, in particular, that the phase transition from Wishart to GOE is smooth.


Random matrix theory Wishart distribution Gaussian Orthogonal Ensemble (GOE) Total variation Phase transition 

Mathematics Subject Classification (2010)




We thank an anonymous reviewer for helpful suggestions.


  1. 1.
    Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge University Press, Cambridge (2010)zbMATHGoogle Scholar
  2. 2.
    Anderson, G.W., Zeitouni, O.: A CLT for a band matrix model. Probab. Theory Relat. Fields 134(2), 283–338 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bubeck, S., Ding, J., Eldan, R., Rácz, M.Z.: Testing for high-dimensional geometry in random graphs. Random Struct. Algorithms 49(3), 503–532 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bubeck, S., Ganguly S.: Entropic CLT and phase transition in high-dimensional Wishart matrices (2015). Preprint.
  5. 5.
    Devroye, L., György, A., Lugosi, G., Udina, F.: High-dimensional random geometric graphs and their clique number. Electron. J. Probab. 16, 2481–2508 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    El Karoui, N.: On the largest eigenvalue of Wishart matrices with identity covariance when \(n\), \(p\) and \(p/n \rightarrow \infty \) (2003). arXiv:math/0309355
  7. 7.
    El Karoui, N.: Tracy-Widom limit for the largest eigenvalue of a large class of complex sample covariance matrices. Ann. Probab. 35, 663–714 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Eldan, R., Mikulincer, D.: Information and dimensionality of anisotropic random geometric graphs (2016). Preprint.
  9. 9.
    Jiang, T., Li, D.: Approximation of rectangular beta-Laguerre ensembles and large deviations. J. Theor. Probab. 28, 804–847 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Johansson, K.: On fluctuations of eigenvalues of random Hermitian matrices. Duke Math. J. 91(1), 151–204 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Johnstone, I.M.: On the distribution of the largest eigenvalue in principal components analysis. Ann. Stat. 29(2), 295–327 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Wishart, J.: The generalised product moment distribution in samples from a normal multivariate population. Biometrika 20A(1/2), 32–52 (1928)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Microsoft ResearchRedmondUSA
  2. 2.University of WashingtonSeattleUSA

Personalised recommendations