Advertisement

Journal of Theoretical Probability

, Volume 32, Issue 1, pp 417–446 | Cite as

Shuffling Large Decks of Cards and the Bernoulli–Laplace Urn Model

  • Evita Nestoridi
  • Graham WhiteEmail author
Article
  • 56 Downloads

Abstract

In card games, in casino games with multiple decks of cards and in cryptography, one is sometimes faced with the following problem: How can a human (as opposed to a computer) shuffle a large deck of cards? The procedure we study is to break the deck into several reasonably sized piles, shuffle each thoroughly, recombine the piles, perform a simple deterministic operation, for instance a cut, and repeat. This process can also be seen as a generalised Bernoulli–Laplace urn model. We use coupling arguments and spherical function theory to derive upper and lower bounds on the mixing times of these Markov chains.

Keywords

Bernoulli–Laplace urn model Shuffling large decks Mixing times Path coupling Spherical functions Dual Hahn polynomials Gelfand pairs 

Mathematics Subject Classification (2010)

60C05 60J10 

Notes

Acknowledgements

We would like to thank Persi Diaconis for suggesting this problem, as well as for many helpful discussions and comments.

References

  1. 1.
    Bayer, D., Diaconis, P.: Trailing the dovetail shuffle to its lair. Ann. Appl. Probab. 2(2), 294–313 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bernoulli, D.: Disquisitiones analyticae de novo problemate coniecturali. Novi Commentarii Acad. Petrop XIV, 3–25 (1769)Google Scholar
  3. 3.
    Bubley, R., Dyer, M., Jt, L.L.: Path coupling: a technique for proving rapid mixing in markov chains. In: FOCS \(^\prime \)97: Proceedings of the 38th Annual Symposium on Foundations of Computer Science (FOCS), p. 223 (1997)Google Scholar
  4. 4.
    Diaconis, P.: Group representations in probability and statistics. Institute of Mathematical Statistics Lecture Notes—Monograph Series, 11. Institute of Mathematical Statistics, Hayward (1988)zbMATHGoogle Scholar
  5. 5.
    Diaconis, P.: Threads through group theory. In: Lewis, M.L. (ed.) Character Theory of Finite Groups. Contemporary Mathematics, pp. 33–47. American Mathematical Society, Providence (2010).  https://doi.org/10.1090/conm/524/10343 CrossRefGoogle Scholar
  6. 6.
    Diaconis, P., Shahshahani, M.: Time to reach stationarity in the Bernoulli–Laplace diffusion model. SIAM J. Math. Anal. 18(1), 208–218 (1987).  https://doi.org/10.1137/0518016 MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Feller, W.: An Introduction to Probability Theory and its Applications, vol. I, 3rd edn. Wiley, New York–London–Sydney (1968)zbMATHGoogle Scholar
  8. 8.
    Jacobsen, M.: Laplace and the origin of the Ornstein-Uhlenbeck process. Bernoulli 2(3), 271–286 (1996).  https://doi.org/10.2307/3318524 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    James, G.: Representations of the Symmetric Group. Lecture Notes. Springer, Berlin (1978)CrossRefGoogle Scholar
  10. 10.
    Karlin, S., McGregor, J.L.: The Hahn polynomials, formulas and an application. Scripta Math. 26, 33–46 (1961)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Koekoek, R., Lesky, P.A., Swarttouw, R.E.: Hypergeometric Orthogonal Polynomials and Their \(q\)-Analogues. Springer Monographs in Mathematics. Springer, Berlin (2010).  https://doi.org/10.1007/978-3-642-05014-5. (With a foreword by Tom H. Koornwinder)CrossRefzbMATHGoogle Scholar
  12. 12.
    Letac, G.: Problèmes classiques de probabilité sur un couple de Gel\(^\prime \)fand. Analytical Methods in Probability Theory (Oberwolfach, 1980). Lecture Notes in Math., vol. 861, pp. 93–120. Springer, Berlin–New York (1981)CrossRefGoogle Scholar
  13. 13.
    Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. American Mathematical Society, Providence (2009). With a chapter by James G. Propp and David B, Wilson zbMATHGoogle Scholar
  14. 14.
    Markov, A.: Rasprostranenie zakona bol’shih chisel na velichiny, zavisyaschie drug ot druga. Izvestiya Fiziko-matematicheskogo obschestva pri Kazanskom universitete, 2-ya seriya 15(3), 135–156 (1906)Google Scholar
  15. 15.
    Pulskamp, R.: Daniel I Bernoulli. http://cerebro.xu.edu/math/Sources/DanBernoulli/index.htm. Accessed Jan 2015
  16. 16.
    Pulskamp, R.: Notes to accompany disquisitiones analyticae de novo problemate coniecturali. http://cerebro.xu.edu/math/Sources/DanBernoulli/notes%20to%20de%20novo%20problemate.pdf. Accessed Jan 2015
  17. 17.
    Rackoff, C., Simon, D.R.: Cryptographic defense against traffic analysis. In: Proceedings of the Twenty-fifth Annual ACM Symposium on Theory of Computing, STOC ’93, pp. 672–681. ACM, New York (1993).  https://doi.org/10.1145/167088.167260
  18. 18.
    Stanton, D.: Orthogonal polynomials and Chevalley groups. In: Askey, R.A., Koornwinder, T.H., Schempp, W.J. (eds.) Special Functions: Group Theoretical Aspects and Applications. Mathematics and its Applications, pp. 87–128. Reidel, Dordrecht (1984).Google Scholar
  19. 19.
    Todhunter, I.: History of the Mathematical Theory of Probability from the Time of Pascal to that of Laplace. New critical idiom. Macmillan and Company (1865). https://books.google.com/books?id=lBoPAAAAIAAJ
  20. 20.
    White, G.: Combinatorial methods in Markov chain mixing. PhD Thesis, Stanford University (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsPrinceton UniversityPrincetonUSA
  2. 2.Department of MathematicsStanford UniversityStanfordUSA

Personalised recommendations