Viability for Stochastic Differential Equations Driven by G-Brownian Motion
Article
First Online:
- 219 Downloads
Abstract
In this paper, we prove a type of Nagumo theorem on viability properties for stochastic differential equations driven by G-Brownian motion (G-SDEs). In particular, an equivalent criterion is formulated through stochastic contingent and tangent sets. Moreover, by the approach of direct and inverse images for stochastic tangent sets we present checkable conditions which keep the solution of a given G-SDE evolving in some particular sets.
Keywords
Stochastic viability Stochastic differential equation Stochastic tangent set G-Brownian motionMathematics Subject Classification (2010)
60H30 60H10Notes
Acknowledgements
The authors would like to thank the editor and the anonymous referee for their helpful discussions and suggestions.
References
- 1.Aubin, J.P., Da Prato, G.: Stochastic viability and invariance. Ann. Sc. Norm. Super. Pisa Cl. Sci. 27, 595–694 (1990)MathSciNetzbMATHGoogle Scholar
- 2.Aubin, J.P., Da Prato, G.: Stochastic Nagumo’s viability theorem. Stoch. Anal. Appl. 13, 1–11 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
- 3.Aubin, J.P., Da Prato, G.: The viability theorem for stochastic differential inclusion. Stoch. Anal. Appl. 16(1), 1–15 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
- 4.Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkhäuser, Boston (1990)zbMATHGoogle Scholar
- 5.Bai, X., Lin, Y.: On the existence and uniqueness of solutions to stochastic differential equations driven by \(G\)-Brownian motion with integral-Lipschitz coefficients. Acta Math. Sin. Engl. Ser. 30(3), 589–610 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
- 6.Buckdahn, R., Peng, S., Quincampoix, M., Rainer, C.: Existence of stochastic control under state constraints. C. R. Acad. Sci. Paris 327, 17–22 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
- 7.Buckdahn, R., Quincampoix, M., Rainer, C., Răşcanu, A.: Viability of moving sets for stochastic differential equation. Adv. Differ. Equ. 7(9), 1045–1072 (2002)MathSciNetzbMATHGoogle Scholar
- 8.Buckdahn, R., Quincampoix, M., Răşcanu, A.: Viability property for backward stochastic differential equation and application to partial differential equation. Probab. Theory Relat. Fields 116(4), 485–504 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
- 9.Ciotir, I., Răşcanu, A.: Viability for stochastic differential equation driven by fractional Brownian motions. J. Differ. Equ. 247, 1505–1528 (2009)CrossRefzbMATHGoogle Scholar
- 10.Da Prato, G., Frankowska, H.: Stochastic viability for compact sets in terms of the distance function. Dyn. Syst. Appl. 10, 177–184 (2001)MathSciNetzbMATHGoogle Scholar
- 11.Da Prato, G., Frankowska, H.: Stochastic viability of convex sets. J. Math. Anal. Appl. 333, 151–163 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
- 12.Denis, L., Hu, M., Peng, S.: Function spaces and capacity related to a sublinear expectation: application to \(G\)-Brownian motion paths. Potential Anal. 34(2), 139–161 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
- 13.Denis, L., Martini, C.: A theoretical framework for the pricing of contingent claims in the presence of model uncertainty. Ann. Appl. Probab. 16, 827–852 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
- 14.Gao, F.: Pathwise properties and homomorphic flows for stochastic differential equations driven by \(G\)-Brownian motion. Stoch. Process. Appl. 119, 3356–3382 (2009)CrossRefzbMATHGoogle Scholar
- 15.Hu, M., Peng, S.: On representation theorem of \(G\)-expectations and paths of \(G\)-Brownian motion. Acta Math. Appl. Sin. Engl. Ser. 25(3), 539–546 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
- 16.Hu, Y., Peng, S.: On the comparison theorem for multidimensional BSDEs. Comptes Rendus Math. 343(2), 135–140 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
- 17.Lin, Q.: Some properties of stochastic differential equations driven by \(G\)-Brownian motion. Acta Math. Sin. Engl. Ser. 29, 923–942 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
- 18.Li, X., Peng, S.: Stopping times and related Itô calculus with \(G\)-Brownian motion. Stoch. Process. Appl. 121, 1492–1508 (2011)CrossRefzbMATHGoogle Scholar
- 19.Li, X., Lin, X., Lin, Y.: Lyapunov-type conditions and stochastic differential equations driven by \(G\)-Brownian motion. J. Math. Anal. Appl. 439, 235–255 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
- 20.Luo, P., Wang, F.: On the comparison theorem for multi-dimensional \(G\)-SDEs. Stat. Probab. Lett. 96, 38–44 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
- 21.Milian, A.: A note on stochastic invariance for Itô equations. Bull. Pol. Acad. Sci. Math. 41(2), 139–150 (1993)MathSciNetzbMATHGoogle Scholar
- 22.Nagumo, M.: Über die lage der integralkurven gewöhnlicher differentialgleichungen. Proc. Phys. Math. Soc. Jpn. 24, 551–559 (1942)zbMATHGoogle Scholar
- 23.Nie, T., Răşcanu, A.: Deterministic characterization of viability for stochastic differential equation driven by fractional Brownian motion. ESAIM Control Optim. Calc. Var. 18, 915–929 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
- 24.Peng, S.: Filtration consistent nonlinear expectations and evaluations of contingent claims. Acta Math. Appl. Sin. Engl. Ser. 20(2), 1–24 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
- 25.Peng, S.: Nonlinear expectations and nonlinear Markov chains. Chin. Ann. Math. 26B(2), 159–184 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
- 26.Peng, S.: Survey on normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations. Sci. China Ser. A Math. 52(7), 1391–1411 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
- 27.Peng, S.: Nonlinear expectations and stochastic calculus under uncertainty (2010). arXiv:1002.4546v1
- 28.Peng, S., Zhu, X.: Necessary and sufficient condition for comparison theorem of 1-dimensional stochastic differential equations. Stoch. Process. Appl. 116, 370–380 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
Copyright information
© Springer Science+Business Media, LLC 2017