Advertisement

Journal of Theoretical Probability

, Volume 31, Issue 3, pp 1429–1468 | Cite as

Anderson Polymer in a Fractional Brownian Environment: Asymptotic Behavior of the Partition Function

  • Kamran Kalbasi
  • Thomas S. Mountford
  • Frederi G. Viens
Article

Abstract

We consider the Anderson polymer partition function
$$\begin{aligned} u(t):=\mathbb {E}^X\left[ e^{\int _0^t \mathrm {d}B^{X(s)}_s}\right] \,, \end{aligned}$$
where \(\{B^{x}_t\,;\, t\ge 0\}_{x\in \mathbb {Z}^d}\) is a family of independent fractional Brownian motions all with Hurst parameter \(H\in (0,1)\), and \(\{X(t)\}_{t\in \mathbb {R}^{\ge 0}}\) is a continuous-time simple symmetric random walk on \(\mathbb {Z}^d\) with jump rate \(\kappa \) and started from the origin. \(\mathbb {E}^X\) is the expectation with respect to this random walk. We prove that when \(H\le 1/2\), the function u(t) almost surely grows asymptotically like \(e^{\lambda t}\), where \(\lambda >0\) is a deterministic number. More precisely, we show that as t approaches \(+\infty \), the expression \(\{\frac{1}{t}\log u(t)\}_{t\in \mathbb {R}^{>0}}\) converges both almost surely and in the \(\hbox {L}^1\) sense to some positive deterministic number \(\lambda \). For \(H>1/2\), we first show that \(\lim _{t\rightarrow \infty } \frac{1}{t}\log u(t)\) exists both almost surely and in the \(\hbox {L}^1\) sense and equals a strictly positive deterministic number (possibly \(+\infty \)); hence, almost surely u(t) grows asymptotically at least like \(e^{\alpha t}\) for some deterministic constant \(\alpha >0\). On the other hand, we also show that almost surely and in the \(\hbox {L}^1\) sense, \(\limsup _{t\rightarrow \infty } \frac{1}{t\sqrt{\log t}}\log u(t)\) is a deterministic finite real number (possibly zero), hence proving that almost surely u(t) grows asymptotically at most like \(e^{\beta t\sqrt{\log t}}\) for some deterministic positive constant \(\beta \). Finally, for \(H>1/2\) when \(\mathbb {Z}^d\) is replaced by a circle endowed with a Hölder continuous covariance function, we show that \(\limsup _{t\rightarrow \infty } \frac{1}{t}\log u(t)\) is a deterministic finite positive real number, hence proving that almost surely u(t) grows asymptotically at most like \(e^{c t}\) for some deterministic positive constant c.

Keywords

Anderson polymer Fractional Brownian motion Parabolic Anderson model Asymptotic behavior Lyapunov exponents Malliavin calculus 

Mathematics Subject Classification (2010)

60H15 

References

  1. 1.
    Borodin, A., Corwin, I.: Moments and Lyapunov exponents for the parabolic Anderson model. Ann. Appl. Probab. 24(3), 1172–1198 (2014)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Carmona, R.A., Molchanov, S.A.: Parabolic Anderson problem and intermittency. Mem. Am. Math. Soc 108(518), viii+125 (1994)MathSciNetMATHGoogle Scholar
  3. 3.
    Comets, F., Cranston, M.: Overlaps and pathwise localization in the Anderson polymer model. Stoch. Process. Appl. 123(6), 2446–2471 (2013)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Cranston, M., Mountford, T.S., Shiga, T.: Lyapunov exponents for the parabolic Anderson model. Acta Math. Univ. Comenian. 71(2), 163–188 (2002)MathSciNetMATHGoogle Scholar
  5. 5.
    Cranstonm, M.: Properties of the parabolic Anderson model and the Anderson polymer model. ISRN Probability and Statistics (2013)Google Scholar
  6. 6.
    Derriennic, Y., Hachem, B.: Sur la convergence en moyenne des suites presque sous-additives. Math. Z. 198(2), 221–224 (1988)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Erhard, D., den Hollander, F., Maillard, G.: The parabolic Anderson model in a dynamic random environment: space-time ergodicity for the quenched Lyapunov exponent. Probab. Theory Related Fields 162(1–2), 1–46 (2015)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Gärtner, J., den Hollander, F., Maillard, G.: Quenched Lyapunov exponent for the parabolic Anderson model in a dynamic random environment. Probability in Complex Physical Systems. Volume 11 of Springer Proceedings of Mathematics, pp. 159–193. Springer, Heidelberg (2012)Google Scholar
  9. 9.
    Gärtner, J., König, W.: The parabolic Anderson model. In: Interacting Stochastic Systems, pp. 153–179. Springer, Berlin (2005)Google Scholar
  10. 10.
    Grinstead, C.M., Snell, J.L.: Introduction to Probability. American Mathematical Society, Providence (1997)MATHGoogle Scholar
  11. 11.
    Janson, S.: Gaussian Hilbert Spaces. Cambridge University Press, Cambridge (1997)CrossRefMATHGoogle Scholar
  12. 12.
    Kalbasi, K., Mountford, T.S.: Feynman-Kac representation for the parabolic Anderson model driven by fractional noise. J. Funct. Anal. 269(5), 1234–1263 (2015)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    König, W.: The Parabolic Anderson Model: Random Walk in Random Potential. Birkhäuser, Basel (2016)CrossRefMATHGoogle Scholar
  14. 14.
    Ledoux, M.: The Concentration of Measure Phenomenon, Volume 89 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (2001)Google Scholar
  15. 15.
    Lifshits, M.: Lectures on Gaussian Processes. Springer, Berlin (2012)CrossRefMATHGoogle Scholar
  16. 16.
    Mishura, Y.S.: Stochastic Calculus for Fractional Brownian Motion and Related Processes. Springer, Berlin (2008)CrossRefMATHGoogle Scholar
  17. 17.
    Mitzenmacher, M., Upfal, E.: Probability and Computing. Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, Cambridge (2005)CrossRefMATHGoogle Scholar
  18. 18.
    Nualart, D.: Stochastic integration with respect to fractional Brownian motion and applications. Stochastic models (Mexico City. 2002), Volume 336 Contemporary Mathematics, pp. 3–39. American Mathematical Society, Providence (2003)Google Scholar
  19. 19.
    Protter, P.E.: Stochastic integration and differential equations, 2nd edn. Version 2.1. Springer, Berlin (2005)Google Scholar
  20. 20.
    Qian, H.: Fractional Brownian motion and fractional Gaussian noise. In: Processes with Long-Range Correlations, pp. 22–33. Springer, Berlin (2003)Google Scholar
  21. 21.
    Robbins, H.: A remark on Stirling’s formula. Am. Math. Monthly 62, 26–29 (1955)MathSciNetMATHGoogle Scholar
  22. 22.
    Rovira, C., Tindel, S.: On the Brownian-directed polymer in a Gaussian random environment. J. Funct. Anal. 222(1), 178–201 (2005)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Üstünel, A.S., Zakai, M.: Transformation of Measure on Wiener Space. Springer Monographs in Mathematics. Springer, Berlin (2000)CrossRefMATHGoogle Scholar
  24. 24.
    Viens, F.G., Zhang, T.: Almost sure exponential behavior of a directed polymer in a fractional Brownian environment. J. Funct. Anal. 255(10), 2810–2860 (2008)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.Michigan State UniversityEast LansingUSA

Personalised recommendations