Journal of Theoretical Probability

, Volume 29, Issue 2, pp 423–442 | Cite as

Countable Partially Exchangeable Mixtures



Partially exchangeable sequences representable as mixtures of Markov chains are completely specified by de Finetti’s mixing measure. The paper characterizes, in terms of a subclass of hidden Markov models, the partially exchangeable sequences with mixing measure concentrated on a countable set, for sequences of random variables both on a discrete space and on a Polish space.


Exchangeability Partial exchangeability Markov exchangeability Countable mixtures of Markov chains Hidden Markov model Mixing measure 

Mathematics Subject Classification

60G09 60J05 


  1. 1.
    Aldous, D.J.: Exchangeability and related topics in Ecole d’Été de Probabilités de Saint-Flour XIII—1983. Lecture Notes in Mathematics, vol. 1117. Springer, Berlin (1985)Google Scholar
  2. 2.
    de Finetti, B.: Sur la condition d’ equivalence partielle in Actualités Scientifiques et Industrielles, vol. 739, pp. 5–18. Hermann, Paris (1938)Google Scholar
  3. 3.
    Dharmadhikari, S.W.: Exchangeable processes which are functions of stationary Markov chains. Ann. Math. Stat. 35, 429–430 (1964)Google Scholar
  4. 4.
    Diaconis, P., Freedman, D.: de Finetti’s theorem for Markov chains. Ann. Probab. 8, 115–130 (1980)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Diaconis, P., Freedman, D.: The Markov moment problem and de Finetti’s theorem, Part I and Part II. Math. Z. 247, 183–212 (2004)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Epifani, I., Fortini, S., Ladelli, L.: A characterization for mixtures of semi-Markov processes. Stat. Probab. Lett. 60, 445–457 (2002)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Finesso, L., Prosdocimi, C.: Partially exchangeable hidden Markov models. In: Proceedings of the European Control Conference, pp. 3910–3914 (2009)Google Scholar
  8. 8.
    Fortini, S., Ladelli, L., Petris, G., Regazzini, E.: On mixtures of distributions of Markov chains. Stoch. Process. Appl. 100, 147–165 (2002)Google Scholar
  9. 9.
    Kallenberg, O.: Probabilistic Symmetries and Invariance Principles. Springer, New York (2005)MATHGoogle Scholar
  10. 10.
    Prosdocimi, C.: Partial Exchangeability and Change Detection for Hidden Markov Models. PhD Dissertation, cycle XXII, University of Padova, Padova (2010)Google Scholar
  11. 11.
    Vidyasagar, M.: The complete realization problem for hidden Markov models: a survey and some new results. Math. Control Signals Syst. 23(1), 1–65 (2011)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Dipartimento di Economia e FinanzaUniversità LUISSRomeItaly
  2. 2.Istituto di Elettronica e di Ingegneria dell’Informazione e delle TelecomunicazioniConsiglio Nazionale delle RicerchePaduaItaly

Personalised recommendations