Journal of Theoretical Probability

, Volume 28, Issue 1, pp 396–422 | Cite as

Rate of Convergence for Discretization of Integrals with Respect to Fractional Brownian Motion

  • Ehsan Azmoodeh
  • Lauri ViitasaariEmail author


In this article, a uniform discretization of stochastic integrals \(\int _{0}^{1} f^{\prime }_-(B_t)\mathrm d B_t\), where \(B\) denotes the fractional Brownian motion with Hurst parameter \(H \in (\frac{1}{2},1)\), is considered for a large class of convex functions \(f\). In Azmoodeh et al. (Stat Decis 27:129–143, 2010), for any convex function \(f\), the almost sure convergence of uniform discretization to such stochastic integral is proved. Here, we prove \(L^r\)-convergence of uniform discretization to stochastic integral. In addition, we obtain a rate of convergence. It turns out that the rate of convergence can be brought arbitrarily close to \(H - \frac{1}{2}\).


Fractional Brownian motion Stochastic integral Discretization Rate of convergence 

Mathematics Subject Classification (2010)

60G22 60H05 41A25 



The authors thank Esko Valkeila for discussions and comments which improved the paper. The authors also thank anonymous referee for useful comments and remarks. Ehsan Azmoodeh thanks the Magnus Ehrnrooth foundation for financial support. Lauri Viitasaari thanks the Finnish Doctoral Programme in Stochastics and Statistics for financial support.


  1. 1.
    Azmoodeh, E., Mishura, Y., Valkeila, E.: On hedging European options in geometric fractional Brownian motion market model. Stat. Decis. 27, 129–143 (2010)MathSciNetGoogle Scholar
  2. 2.
    Biagini, F., Campanino, M., Fuschini, S.: Discrete approximation of stochastic integrals with respect to fractional Brownian motion of Hurst index \(H > \frac{1}{2}\). Stochastics 80(5), 407–426 (2008)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Cheridito, P.: Mixed fractional Brownian motion. Bernoulli 7(6), 913–934 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Coutin, L., Nualart, D., Tudor, C.: Tanaka formula for the fractional Brownian motion. Stoch. Process. Appl. 94(2), 301–315 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Friz, P., Victoir, N.: Multidimensional Stochastic Processes as Rough Paths. Theory and Applications. Cambridge Studies of Advanced Mathematics. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  6. 6.
    Lifshits, M.A.: Gaussian Random Functions. Mathematics and its Applications, vol. 322. Kluwer, Dordrecht (1995)CrossRefGoogle Scholar
  7. 7.
    Mishura, Y.: Stochastic Calculus for Fractional Brownian Motion and Related Processes. Lecture Notes in Mathematics, vol. 1929. Springer, Berlin (2008)CrossRefGoogle Scholar
  8. 8.
    Nualart, D., Răşcanu, A.: Differential equations driven by fractional Brownian motion. Collect. Math. 53, 55–81 (2002)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives, Theory and Applications. Gordon and Breach Science, Yvendon (1993)zbMATHGoogle Scholar
  10. 10.
    Wasilkowski, G.W., Woźniakowski, H.: On the complexity of stochastic integration. Math. Comput. 70(234), 685–698 (2001)CrossRefzbMATHGoogle Scholar
  11. 11.
    Young, L.C.: An inequality of the Hölder type, connected with Stieltjes integration. Acta Math. 67, 251–282 (1936)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Zähle, M.: Integration with respect to fractal functions and stochastic calculus. Part I. Probab. Theory Relat. Fields 111, 333–372 (1998)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. la Technologie et de la Communication, Faculté des SciencesUniversity of LuxembourgLuxembourg CityLuxembourg
  2. 2.Department of Mathematics and Systems AnalysisAalto University School of ScienceEspooFinland

Personalised recommendations