Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A Stochastic Stefan Problem

  • 519 Accesses

  • 6 Citations


We consider a stochastic perturbation of the Stefan problem. The noise is Brownian in time and smoothly correlated in space. We prove existence and uniqueness and characterize the domain of existence.

This is a preview of subscription content, log in to check access.

Fig. 1


  1. 1.

    Barbu, V., Da Prato, G.: The two-phase stochastic Stefan problem. Probab. Theory Relat. Fields 124(4), 544–560 (2002)

  2. 2.

    Barbu, V., Da Prato, G., Röckner, M.: Existence of strong solutions for stochastic porous media equation under general monotonicity conditions. Ann. Probab. 37(2), 428–452 (2009)

  3. 3.

    Caffarelli, L., Salsa, S.: A Geometric Approach to Free Boundary Problems. Graduate Studies in Mathematics, vol. 68. American Mathematical Society, Providence (2005)

  4. 4.

    Caffarelli, L.A., Lee, K.-A., Mellet, A.: Homogenization and flame propagation in periodic excitable media: the asymptotic speed of propagation. Commun. Pure Appl. Math. 59(4), 501–525 (2006)

  5. 5.

    Chow, P.L.: Stochastic Partial Differential Equations. Chapman & Hall/CRC, Boca Raton (2007)

  6. 6.

    Da Prato, G., Röckner, M.: Invariant measures for a stochastic porous medium equation. In: Stochastic Analysis and Related Topics in Kyoto. Adv. Stud. Pure Math., vol. 41, pp. 13–29. Math. Soc. Japan, Tokyo (2004)

  7. 7.

    Da Prato, G., Röckner, M.: Weak solutions to stochastic porous media equations. J. Evol. Equ. 4(2), 249–271 (2004)

  8. 8.

    Da Prato, G., Röckner, M., Rozovskii, B.L., Wang, F.-Y.: Strong solutions of stochastic generalized porous media equations: Existence, uniqueness, and ergodicity. Commun. Partial Differ. Equ. 31(1–3), 277–291 (2006)

  9. 9.

    Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1998)

  10. 10.

    Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs (1964)

  11. 11.

    Gaines, J.G.: Numerical experiments with S(P)DE’s. In: Stochastic Partial Differential Equations. London Math. Soc. Lecture Note Ser., vol. 216, pp. 55–71. Cambridge University Press, Cambridge (1995)

  12. 12.

    Higham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43(3), 525–546 (2001)

  13. 13.

    Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, New York (1991)

  14. 14.

    Kim, J.U.: On the stochastic porous medium equation. J. Differ. Equ. 220(1), 163–194 (2006)

  15. 15.

    Kim, K., Mueller, C., Sowers, R.B.: A stochastic moving boundary value problem. Illinois J. Math. (2011), to appear

  16. 16.

    Lunardi, A.: An introduction to parabolic moving boundary problems. In: Functional Analytic Methods for Evolution Equations. Lecture Notes in Math., vol. 1855, pp. 371–399. Springer, Berlin (2004)

  17. 17.

    McOwen, R.C.: Partial Differential Equations: Methods and Applications. Prentice-Hall, Upper Saddle (1996)

  18. 18.

    Walsh, J.B.: An introduction to stochastic partial differential equations. In: École d’été de probabilités de Saint-Flour, XIV–1984. Lecture Notes in Math., vol. 1180, pp. 265–439. Springer, Berlin (1986)

Download references

Author information

Correspondence to Kunwoo Kim.

Additional information

This work was supported by NSF grant DMS0705260. R.S. would like to thanks the Departments of Mathematics and Statistics of Stanford University for their hospitality in the Spring of 2010 during a sabbatical stay. The authors would like to thank the anonymous referee for his meticulous reading of the original version of this manuscript.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, K., Zheng, Z. & Sowers, R.B. A Stochastic Stefan Problem. J Theor Probab 25, 1040–1080 (2012). https://doi.org/10.1007/s10959-011-0392-1

Download citation


  • Stochastic partial differential equations
  • Stefan boundary condition
  • Spatially correlated noise

Mathematics Subject Classification (2000)

  • 60H15
  • 35R35
  • 80A22