Journal of Theoretical Probability

, Volume 25, Issue 2, pp 496–504 | Cite as

A Universality Property of Gaussian Analytic Functions

  • Andrew Ledoan
  • Marco Merkli
  • Shannon StarrEmail author


We consider random analytic functions defined on the unit disk of the complex plane \(f(z) = \sum_{n=0}^{\infty} a_{n} X_{n} z^{n}\), where the X n ’s are i.i.d., complex-valued random variables with mean zero and unit variance. The coefficients a n are chosen so that f(z) is defined on a domain of ℂ carrying a planar or hyperbolic geometry, and \(\mathbf{E}f(z)\overline{f(w)}\) is covariant with respect to the isometry group. The corresponding Gaussian analytic functions have been much studied, and their zero sets have been considered in detail in a monograph by Hough, Krishnapur, Peres, and Virág. We show that for non-Gaussian coefficients, the zero set converges in distribution to that of the Gaussian analytic functions as one transports isometrically to the boundary of the domain. The proof is elementary and general.


Random analytic functions Gaussian analytic functions 

Mathematics Subject Classification (2000)

30B20 60B12 60G15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baez, J.: The Beauty of Roots. November 2009,
  2. 2.
    Bharucha-Reid, A.T., Sambandham, M.: Random Polynomials. Academic Press, Orlando (1986) zbMATHGoogle Scholar
  3. 3.
    Bleher, P., Di, X.: Correlations between zeros of a random polynomial. J. Stat. Phys. 88, 269–305 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bleher, P., Shiffman, B., Zelditch, S.: Universality and scaling of correlations between zeros on complex manifolds. Invent. Math. 142, 351–395 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bleher, P., Shiffman, B., Zelditch, S.: Correlations between zeros and supersymmetry. Commun. Math. Phys. 224, 255–269 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Bogomolny, E., Bohigas, O., Leboeuf, P.: Distributions of roots of random polynomials. Phys. Rev. Lett. 68, 2726–2729 (1992) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Bogomolny, E., Bohigas, O., Leboeuf, P.: Quantum chaotic dynamics and random polynomials. J. Stat. Phys. 85, 639–679 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Edelman, A., Kostlan, E.: How many zeros of a random polynomial are real? Bull. Am. Math. Soc. 32, 1–37 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Ben Hough, J., Krishnapur, M., Peres, Y., Virág, B.: Zeros of Gaussian Analytic Functions and Determinantal Point Processes. American Mathematical Society, Providence (2009) zbMATHGoogle Scholar
  10. 10.
    Ibragimov, I., Zeitouni, O.: On roots of random polynomials. Trans. Am. Math. Soc. 349(6), 2427–2441 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Kahane, J.-P.: Some Random Series of Functions. Raytheon Education Co., Lexington (1968) zbMATHGoogle Scholar
  12. 12.
    Kostlan, E.: On the distribution of roots of random polynomials. In: From Topology to Computation: Proceedings of the Smalefest, Berkeley, CA, 1990. Springer, New York (1993) Google Scholar
  13. 13.
    Nazarov, F., Sodin, M.: What is … a Gaussian entire function? Not. Am. Math. Soc. 57(3), 375–377 (2010) MathSciNetzbMATHGoogle Scholar
  14. 14.
    Peres, Y., Virág, B.: Zeros of the i.i.d. Gaussian power series: a conformally invariant determinantal process. Acta Math. 149, 1–35 (2005) CrossRefGoogle Scholar
  15. 15.
    Shepp, L., Vanderbei, R.J.: The complex zeros of random polynomials. Trans. Am. Math. Soc. 347(11), 4365–4384 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Shub, M., Smale, S.: Complexity of Bezout’s theorem. I. Geometric aspects. J. Am. Math. Soc. 6, 459–501 (1993) MathSciNetzbMATHGoogle Scholar
  17. 17.
    Valko, B., Virág, B.: Random Schrödinger operators on long boxes, noise explosion and the GOE. Preprint, arXiv:0912.0097

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of RochesterRochesterUSA
  2. 2.Department of MathematicsBoston CollegeChestnut HillUSA
  3. 3.Department of Mathematics and StatisticsMemorial University of NewfoundlandSt. John’sCanada

Personalised recommendations