Journal of Theoretical Probability

, Volume 25, Issue 2, pp 496–504

A Universality Property of Gaussian Analytic Functions

Article

Abstract

We consider random analytic functions defined on the unit disk of the complex plane \(f(z) = \sum_{n=0}^{\infty} a_{n} X_{n} z^{n}\), where the Xn’s are i.i.d., complex-valued random variables with mean zero and unit variance. The coefficients an are chosen so that f(z) is defined on a domain of ℂ carrying a planar or hyperbolic geometry, and \(\mathbf{E}f(z)\overline{f(w)}\) is covariant with respect to the isometry group. The corresponding Gaussian analytic functions have been much studied, and their zero sets have been considered in detail in a monograph by Hough, Krishnapur, Peres, and Virág. We show that for non-Gaussian coefficients, the zero set converges in distribution to that of the Gaussian analytic functions as one transports isometrically to the boundary of the domain. The proof is elementary and general.

Keywords

Random analytic functions Gaussian analytic functions 

Mathematics Subject Classification (2000)

30B20 60B12 60G15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baez, J.: The Beauty of Roots. November 2009, http://math.ucr.edu/home/baez/roots/
  2. 2.
    Bharucha-Reid, A.T., Sambandham, M.: Random Polynomials. Academic Press, Orlando (1986) MATHGoogle Scholar
  3. 3.
    Bleher, P., Di, X.: Correlations between zeros of a random polynomial. J. Stat. Phys. 88, 269–305 (1997) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bleher, P., Shiffman, B., Zelditch, S.: Universality and scaling of correlations between zeros on complex manifolds. Invent. Math. 142, 351–395 (2000) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Bleher, P., Shiffman, B., Zelditch, S.: Correlations between zeros and supersymmetry. Commun. Math. Phys. 224, 255–269 (2001) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Bogomolny, E., Bohigas, O., Leboeuf, P.: Distributions of roots of random polynomials. Phys. Rev. Lett. 68, 2726–2729 (1992) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Bogomolny, E., Bohigas, O., Leboeuf, P.: Quantum chaotic dynamics and random polynomials. J. Stat. Phys. 85, 639–679 (1996) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Edelman, A., Kostlan, E.: How many zeros of a random polynomial are real? Bull. Am. Math. Soc. 32, 1–37 (1995) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Ben Hough, J., Krishnapur, M., Peres, Y., Virág, B.: Zeros of Gaussian Analytic Functions and Determinantal Point Processes. American Mathematical Society, Providence (2009) MATHGoogle Scholar
  10. 10.
    Ibragimov, I., Zeitouni, O.: On roots of random polynomials. Trans. Am. Math. Soc. 349(6), 2427–2441 (1997) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Kahane, J.-P.: Some Random Series of Functions. Raytheon Education Co., Lexington (1968) MATHGoogle Scholar
  12. 12.
    Kostlan, E.: On the distribution of roots of random polynomials. In: From Topology to Computation: Proceedings of the Smalefest, Berkeley, CA, 1990. Springer, New York (1993) Google Scholar
  13. 13.
    Nazarov, F., Sodin, M.: What is … a Gaussian entire function? Not. Am. Math. Soc. 57(3), 375–377 (2010) MathSciNetMATHGoogle Scholar
  14. 14.
    Peres, Y., Virág, B.: Zeros of the i.i.d. Gaussian power series: a conformally invariant determinantal process. Acta Math. 149, 1–35 (2005) CrossRefGoogle Scholar
  15. 15.
    Shepp, L., Vanderbei, R.J.: The complex zeros of random polynomials. Trans. Am. Math. Soc. 347(11), 4365–4384 (1995) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Shub, M., Smale, S.: Complexity of Bezout’s theorem. I. Geometric aspects. J. Am. Math. Soc. 6, 459–501 (1993) MathSciNetMATHGoogle Scholar
  17. 17.
    Valko, B., Virág, B.: Random Schrödinger operators on long boxes, noise explosion and the GOE. Preprint, arXiv:0912.0097

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of RochesterRochesterUSA
  2. 2.Department of MathematicsBoston CollegeChestnut HillUSA
  3. 3.Department of Mathematics and StatisticsMemorial University of NewfoundlandSt. John’sCanada

Personalised recommendations