Journal of Theoretical Probability

, Volume 25, Issue 2, pp 313–332 | Cite as

Concave Majorant of Stochastic Processes and Burgers Turbulence

  • Raphaël Lachièze-ReyEmail author


The asymptotic solution of the inviscid Burgers equations with initial potential ψ is closely related to the convex hull of the graph of ψ.

In this paper, we study this convex hull, and more precisely its extremal points, if ψ is a stochastic process. The times where those extremal points are reached, called extremal times, form a negligible set for Lévy processes, their integrated processes, and Itô processes. We examine more closely the case of a Lévy process with bounded variation. Its extremal points are almost surely countable, with accumulation only around the extremal values. These results are derived from the general study of the extremal times of ψ+f, where ψ is a Lévy process and f a smooth deterministic drift.

These results allow us to show that, for an inviscid Burgers turbulence with a compactly supported initial potential ψ, the only point capable of being Lagrangian regular is the time T where ψ reaches its maximum, and that is indeed a regular point if and only if 0 is regular for both half-lines. As a consequence, if the turbulence occurs on a non-compact interval, there are almost surely no Lagrangian regular points.


Lévy processes Burgers equation Convex hull 

Mathematics Subject Classification (2000)

60G17 60D05 35Q35 35R60 60J99 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avellaneda, M., E, W.: Statistical properties of shocks in Burgers turbulence. Commun. Math. Phys. 172, 13–38 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Avellaneda, M.: Statistical properties of shocks in Burgers turbulence, II: Tail probabilities for velocities, shock-strengths and rarefaction intervals. Commun. Math. Phys. 169, 45–59 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bertoin, J.: Lévy Processes. Cambridge Tracts in Mathematics (1996) zbMATHGoogle Scholar
  4. 4.
    Cole, J.D.: On a quasi linear parabolic equation occurring in aerodynamics. Q. Appl. Math. 9, 225–236 (1951) zbMATHGoogle Scholar
  5. 5.
    Bertoin, J.: Regularity of the half-line for Lévy processes. Bull. Sci. Math. 121(5), 345–354 (1997) MathSciNetzbMATHGoogle Scholar
  6. 6.
    Bertoin, J.: Large deviation estimates in Burgers turbulence with stable noise initial data. J. Stat. Phys. 91(3/4), 655–667 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Bertoin, J.: Structure of shocks in Burgers turbulence with stable noise initial data. Commun. Math. Phys. 203, 397–406 (1998) MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bertoin, J.: The convex minorant of the Cauchy process. Electron. Commun. Probab. 5, 51–55 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Davydov, Yu.: Enveloppes convexes des processus gaussiens. Ann. Inst. Henri Poincaré Probab. Stat. 38(6), 847–861 (2002) zbMATHCrossRefGoogle Scholar
  10. 10.
    Groenboom, P.: The concave majorant of Brownian motion. Ann. Probab. 11(4), 1016–1027 (1983) MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hopf, E.: The partial differential equation u t+uu x=μu xx. Commun. Pure Appl. Math. 3, 201–230 (1950) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Pitman, J.W.: Remarks on the convex minorant of Brownian motion. In: Seminar on Stochastic Processes Evanston (1982) Google Scholar
  13. 13.
    Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Springer, Berlin (1991) zbMATHGoogle Scholar
  14. 14.
    She, Z.S., Aurell, E., Frisch, U.: The inviscid Burgers equation with initial data of Brownian type. Commun. Math. Phys. 148, 623–641 (1992) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Sinai, Y.G.: Statistics of shocks in solutions of inviscid Burgers equation. Commun. Math. Phys. 148, 601–621 (1992) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Skorohod, A.V.: Random Processes with Independent Increments. Kluwer Academic, Dordrecht (1991) zbMATHGoogle Scholar
  17. 17.
    Winkel, M.: Limit clusters in the inviscid Burgers turbulence with certain random initial velocities. J. Stat. Phys. 107, 893–917 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Winkel, M.: Burgers turbulence initialized by a regenerative impulse. Stoch. Process. Appl. 93, 241–268 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Woyczinski, W.A.: Burgers KPZ-Turbulence. Springer, Berlin (1999) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Equipe Probabilités et statistiques, UFR MathématiquesUniv. Lille 1Villeneuve d’Ascq CedexFrance

Personalised recommendations