Journal of Theoretical Probability

, Volume 25, Issue 2, pp 313–332

Concave Majorant of Stochastic Processes and Burgers Turbulence

Article
  • 61 Downloads

Abstract

The asymptotic solution of the inviscid Burgers equations with initial potential ψ is closely related to the convex hull of the graph of ψ.

In this paper, we study this convex hull, and more precisely its extremal points, if ψ is a stochastic process. The times where those extremal points are reached, called extremal times, form a negligible set for Lévy processes, their integrated processes, and Itô processes. We examine more closely the case of a Lévy process with bounded variation. Its extremal points are almost surely countable, with accumulation only around the extremal values. These results are derived from the general study of the extremal times of ψ+f, where ψ is a Lévy process and f a smooth deterministic drift.

These results allow us to show that, for an inviscid Burgers turbulence with a compactly supported initial potential ψ, the only point capable of being Lagrangian regular is the time T where ψ reaches its maximum, and that is indeed a regular point if and only if 0 is regular for both half-lines. As a consequence, if the turbulence occurs on a non-compact interval, there are almost surely no Lagrangian regular points.

Keywords

Lévy processes Burgers equation Convex hull 

Mathematics Subject Classification (2000)

60G17 60D05 35Q35 35R60 60J99 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avellaneda, M., E, W.: Statistical properties of shocks in Burgers turbulence. Commun. Math. Phys. 172, 13–38 (1995) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Avellaneda, M.: Statistical properties of shocks in Burgers turbulence, II: Tail probabilities for velocities, shock-strengths and rarefaction intervals. Commun. Math. Phys. 169, 45–59 (1995) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bertoin, J.: Lévy Processes. Cambridge Tracts in Mathematics (1996) MATHGoogle Scholar
  4. 4.
    Cole, J.D.: On a quasi linear parabolic equation occurring in aerodynamics. Q. Appl. Math. 9, 225–236 (1951) MATHGoogle Scholar
  5. 5.
    Bertoin, J.: Regularity of the half-line for Lévy processes. Bull. Sci. Math. 121(5), 345–354 (1997) MathSciNetMATHGoogle Scholar
  6. 6.
    Bertoin, J.: Large deviation estimates in Burgers turbulence with stable noise initial data. J. Stat. Phys. 91(3/4), 655–667 (1998) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Bertoin, J.: Structure of shocks in Burgers turbulence with stable noise initial data. Commun. Math. Phys. 203, 397–406 (1998) MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bertoin, J.: The convex minorant of the Cauchy process. Electron. Commun. Probab. 5, 51–55 (2000) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Davydov, Yu.: Enveloppes convexes des processus gaussiens. Ann. Inst. Henri Poincaré Probab. Stat. 38(6), 847–861 (2002) MATHCrossRefGoogle Scholar
  10. 10.
    Groenboom, P.: The concave majorant of Brownian motion. Ann. Probab. 11(4), 1016–1027 (1983) MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hopf, E.: The partial differential equation u t+uu x=μu xx. Commun. Pure Appl. Math. 3, 201–230 (1950) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Pitman, J.W.: Remarks on the convex minorant of Brownian motion. In: Seminar on Stochastic Processes Evanston (1982) Google Scholar
  13. 13.
    Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Springer, Berlin (1991) MATHGoogle Scholar
  14. 14.
    She, Z.S., Aurell, E., Frisch, U.: The inviscid Burgers equation with initial data of Brownian type. Commun. Math. Phys. 148, 623–641 (1992) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Sinai, Y.G.: Statistics of shocks in solutions of inviscid Burgers equation. Commun. Math. Phys. 148, 601–621 (1992) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Skorohod, A.V.: Random Processes with Independent Increments. Kluwer Academic, Dordrecht (1991) MATHGoogle Scholar
  17. 17.
    Winkel, M.: Limit clusters in the inviscid Burgers turbulence with certain random initial velocities. J. Stat. Phys. 107, 893–917 (2002) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Winkel, M.: Burgers turbulence initialized by a regenerative impulse. Stoch. Process. Appl. 93, 241–268 (2001) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Woyczinski, W.A.: Burgers KPZ-Turbulence. Springer, Berlin (1999) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Equipe Probabilités et statistiques, UFR MathématiquesUniv. Lille 1Villeneuve d’Ascq CedexFrance

Personalised recommendations