On the Generalized Feynman–Kac Transformation for Nearly Symmetric Markov Processes
Abstract
Suppose that X is a right process which is associated with a non-symmetric Dirichlet form \((\mathcal{E},D(\mathcal{E}))\) on L 2(E;m). For \(u\in D(\mathcal{E})\), we have Fukushima’s decomposition: \(\tilde{u}(X_{t})-\tilde{u}(X_{0})=M^{u}_{t}+N^{u}_{t}\). In this paper, we investigate the strong continuity of the generalized Feynman–Kac semigroup defined by \(P^{u}_{t}f(x)=E_{x}[e^{N^{u}_{t}}f(X_{t})]\). Let \(Q^{u}(f,g)=\mathcal{E}(f,g)+\mathcal{E}(u,fg)\) for \(f,g\in D(\mathcal{E})_{b}\). Denote by J 1 the dissymmetric part of the jumping measure J of \((\mathcal{E},D(\mathcal{E}))\). Under the assumption that J 1 is finite, we show that \((Q^{u},D(\mathcal{E})_{b})\) is lower semi-bounded if and only if there exists a constant α 0≥0 such that \(\|P^{u}_{t}\|_{2}\leq e^{\alpha_{0}t}\) for every t>0. If one of these conditions holds, then \((P^{u}_{t})_{t\geq0}\) is strongly continuous on L 2(E;m). If X is equipped with a differential structure, then this result also holds without assuming that J 1 is finite.
Keywords
Non-symmetric Dirichlet form Generalized Feynman–Kac semigroup Strong continuity Lower semi-bounded Beurling–Deny formula LeJan’s transformation ruleMathematics Subject Classification (2000)
31C25 60J57Preview
Unable to display preview. Download preview PDF.
References
- 1.Albeverio, S., Ma, Z.M.: Perturbation of Dirichlet forms-lower semiboundedness, closablility, and form cores. J. Funct. Anal. 99, 332–356 (1991) MathSciNetMATHCrossRefGoogle Scholar
- 2.Albeverio, S., Ma, Z.M.: Additive functionals, nowhere Radon and Kato class smooth measures associated with Dirichlet forms. Osaka J. Math. 29, 247–265 (1992) MathSciNetMATHGoogle Scholar
- 3.Chen, Z.Q.: On Feynman–Kac perturbation of symmetric Markov processes. In: Proceedings of Functional Analysis IX. Dubrovnik, Croatia, pp. 39–43 (2005) Google Scholar
- 4.Chen, C.Z.: A note on perturbation of nonsymmetric Dirichlet forms by signed smooth measures. Acta Math. Sci. B 27, 219–224 (2007) MATHGoogle Scholar
- 5.Chen, Z.Q., Song, R.M.: Conditional gauge therem for non-local Feynman–Kac transforms. Probab. Theory Relat. Fields 125, 45–72 (2003) MathSciNetMATHCrossRefGoogle Scholar
- 6.Chen, C.Z., Sun, W.: Strong continuity of generalized Feynman–Kac semigroups: necessary and sufficient conditions. J. Funct. Anal. 237, 446–465 (2006) MathSciNetMATHCrossRefGoogle Scholar
- 7.Chen, C.Z., Sun, W.: Girsanov transformations for non-symmetric diffusions. Can. J. Math. 61, 534–547 (2009) MATHCrossRefGoogle Scholar
- 8.Chen, Z.Q., Zhang, T.S.: Girsanov and Feynman–Kac type transformations for symmetric Markov processes. Ann. Inst. Henri Poincaré, Probab. Stat. 38, 475–505 (2002) MATHCrossRefGoogle Scholar
- 9.Chen, Z.Q., Ma, Z.M., Röckner, M.: Quasi-homeomorphisms of Dirichlet forms. Nagoya Math. J. 136, 1–15 (1994) MathSciNetMATHGoogle Scholar
- 10.Chen, C.Z., Ma, Z.M., Sun, W.: On Girsanov and generalized Feynman–Kac transformations for symmetric Markov processes. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 10, 141–163 (2007) MathSciNetMATHCrossRefGoogle Scholar
- 11.Chen, Z.Q., Fitzsimmons, P.J., Kuwae, K., Zhang, T.S.: Stochastic calculus for symmetric Markov processes. Ann. Probab. 36, 931–970 (2008) MathSciNetMATHCrossRefGoogle Scholar
- 12.Chen, Z.Q., Fitzsimmons, P.J., Kuwae, K., Zhang, T.S.: Perturbation of symmetric Markov processes. Probab. Theory Relat. Fields 140, 239–275 (2008) MathSciNetMATHCrossRefGoogle Scholar
- 13.Chen, Z.Q., Fitzsimmons, P.J., Kuwae, K., Zhang, T.S.: On general perturbations of symmetric Markov processes. J. Math. Pures Appl. 92, 363–374 (2009) MathSciNetMATHCrossRefGoogle Scholar
- 14.Ethier, S.N., Kurtz, T.G.: Markov Processes Characterization and Convergence. Wiley, New York (1986) MATHGoogle Scholar
- 15.Fitzsimmons, P.J.: On the quasi-regularity of semi-Dirichlet forms. Potential Anal. 15, 158–185 (2001) MathSciNetCrossRefGoogle Scholar
- 16.Fitzsimmons, P.J., Kuwae, K.: Nonsymmetric perturbations of symmetric Dirichlet forms. J. Funct. Anal. 208, 140–162 (2004) MathSciNetMATHCrossRefGoogle Scholar
- 17.Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes. de Gruyrer, Berlin (1994) MATHCrossRefGoogle Scholar
- 18.Glover, J., Rao, M., Šikić, H., Song, R.: Quadratic forms corresponding to the generalized Schrödinger semigroups. J. Funct. Anal. 125, 358–378 (1994) MathSciNetMATHCrossRefGoogle Scholar
- 19.He, S.W., Wang, J.G., Yan, J.A.: Semimartingale Theory and Stochastic Calculus. Science Press, Beijing (1992) MATHGoogle Scholar
- 20.Hu, Z.C., Ma, Z.M., Sun, W.: Extensions of Lévy–Khintchine formula and Beurling–Deny formula in semi-Dirichlet forms setting. J. Funct. Anal. 239, 179–213 (2006) MathSciNetMATHCrossRefGoogle Scholar
- 21.Hu, Z.C., Ma, Z.M., Sun, W.: On representations of non-symmetric Dirichlet forms. Potential Anal. 32, 101–131 (2010) MathSciNetMATHCrossRefGoogle Scholar
- 22.Ma, Z.M., Röckner, M.: Introduction to the Theory of (Non-symmetric) Dirichlet Forms. Springer, Berlin (1992) MATHCrossRefGoogle Scholar
- 23.Oshima, Y.: Lecture on Dirichlet spaces. Univ. Erlangen-Nürnberg (1988) Google Scholar
- 24.Protter, P.E.: Stochastic Integration and Differential Equations. Springer, Berlin (2005) Google Scholar
- 25.Zhang, T.S.: Generalized Feynman–Kac semigroups, associated quadratic forms and asymptotic properties. Potential Anal. 14, 387–408 (2001) MathSciNetMATHCrossRefGoogle Scholar