Advertisement

Journal of Theoretical Probability

, Volume 25, Issue 2, pp 333–352 | Cite as

Approximation of Projections of Random Vectors

  • Elizabeth MeckesEmail author
Article

Abstract

Let X be a d-dimensional random vector and X θ its projection onto the span of a set of orthonormal vectors {θ 1,…,θ k }. Conditions on the distribution of X are given such that if θ is chosen according to Haar measure on the Stiefel manifold, the bounded-Lipschitz distance from X θ to a Gaussian distribution is concentrated at its expectation; furthermore, an explicit bound is given for the expected distance, in terms of d, k, and the distribution of X, allowing consideration not just of fixed k but of k growing with d. The results are applied in the setting of projection pursuit, showing that most k-dimensional projections of n data points in ℝ d are close to Gaussian, when n and d are large and k=clog (d) for a small constant c.

Keywords

Random measures Projection pursuit Entropy Measure concentration Stein’s method 

Mathematics Subject Classification (2000)

60G57 60E15 62E20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arratia, R., Goldstein, L., Gordon, L.: Two moments suffice for Poisson approximations: the Chen–Stein method. Ann. Probab. 17(1), 9–25 (1989) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Arratia, R., Goldstein, L., Gordon, L.: Poisson approximation and the Chen–Stein method. Statist. Sci. 5(4), 403–434 (1990). With comments and a rejoinder by the authors MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bobkov, S.G.: On concentration of distributions of random weighted sums. Ann. Probab. 31(1), 195–215 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Chatterjee, S., Meckes, E.: Multivariate normal approximation using exchangeable pairs. ALEA Lat. Am. J. Probab. Math. Stat. 4, 257–283 (2008) MathSciNetzbMATHGoogle Scholar
  5. 5.
    Chen, L.H.Y.: Poisson approximation for dependent trials. Ann. Probab. 3(3), 534–545 (1975) zbMATHCrossRefGoogle Scholar
  6. 6.
    Diaconis, P.: Stein’s method for Markov chains: first examples. In: Stein’s Method: Expository Lectures and Applications. IMS Lecture Notes Monogr. Ser., vol. 46, pp. 27–43. Inst. Math. Statist., Beachwood (2004) Google Scholar
  7. 7.
    Diaconis, P., Freedman, D.: Asymptotics of graphical projection pursuit. Ann. Stat. 12(3), 793–815 (1984) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Dudley, R.M.: The sizes of compact subsets of Hilbert space and continuity of Gaussian processes. J. Funct. Anal. 1, 290–330 (1967) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Federer, H.: Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften, vol. 153, Springer, New York (1969) zbMATHGoogle Scholar
  10. 10.
    Götze, F., Tikhomirov, A.N.: Limit theorems for spectra of random matrices with martingale structure. In: Stein’s Method and Applications. Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., vol. 5, pp. 181–193. Singapore Univ. Press, Singapore (2005) CrossRefGoogle Scholar
  11. 11.
    Holmes, S.: Stein’s method for birth and death chains. In: Stein’s Method: Expository Lectures and Applications. IMS Lecture Notes Monogr. Ser., vol. 46, pp. 45–67. Inst. Math. Statist., Beachwood, OH (2004) Google Scholar
  12. 12.
    Hörmander, L.: The Analysis of Linear Partial Differential Operators. I. Classics in Mathematics. Springer, Berlin (2003). Distribution theory and Fourier analysis, Reprint of the second (1990) edition [Springer, Berlin; MR1065993 (91m:35001a)] zbMATHGoogle Scholar
  13. 13.
    Loh, W.-L.: Stein’s method and multinomial approximation. Ann. Appl. Probab. 2(3), 536–554 (1992) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Luk, H.M.: Stein’s method for the gamma distribution and related statistical applications. Doctoral dissertation, University of Southern California (1994) Google Scholar
  15. 15.
    Meckes, E.S.: Quantitative asymptotics of graphical projection pursuit. Electron. Commun. Probab. 14, 176–185 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Meckes, E.: On Stein’s method for multivariate normal approximation. In: High Dimensional Probability V: The Luminy Volume. IMS Coll., vol. 5, pp. 153–178. Inst. Math. Statist., Beachwood (2009) CrossRefGoogle Scholar
  17. 17.
    Milman, V.D., Schechtman, G.: Asymptotic Theory of Finite-Dimensional Normed Spaces. Lecture Notes in Mathematics, vol. 1200. Springer, Berlin (1986). With an appendix by M. Gromov zbMATHGoogle Scholar
  18. 18.
    Pickett, A.: Rates of convergence of χ 2 approximations via Stein’s method. Doctoral dissertation, University of Oxford (2004) Google Scholar
  19. 19.
    Reinert, G., Röllin, A.: Multivariate normal approximation with Stein’s method of exchangeable pairs under a general linearity condition. Ann. Probab. 37(6), 2150–2173 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Ross, S.: A First Course in Probability. Macmillan, New York (1976) zbMATHGoogle Scholar
  21. 21.
    Sudakov, V.N.: Typical distributions of linear functionals in finite-dimensional spaces of high dimension. Dokl. Akad. Nauk SSSR 243(6), 1402–1405 (1978) MathSciNetGoogle Scholar
  22. 22.
    van der Vaart, A.W., Wellner, J.A.: Weak Convergence and Empirical Processes. Springer Series in Statistics. Springer, New York (1996). With applications to statistics Google Scholar
  23. 23.
    von Weizsäcker, H.: Sudakov’s typical marginals, random linear functionals and a conditional central limit theorem. Probab. Theory Relat. Fields 107(3), 313–324 (1997) zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Case Western Reserve UniversityClevelandUSA

Personalised recommendations