Journal of Theoretical Probability

, Volume 23, Issue 4, pp 945–950 | Cite as

Circular Law for Noncentral Random Matrices

Article

Abstract

Let (Xjk)j,k1 be an infinite array of i.i.d. complex random variables with mean 0 and variance 1. Let λn,1,…,λn,n be the eigenvalues of \((\frac{1}{\sqrt{n}}X_{jk})_{1\leqslant j,k\leqslant n}\). The strong circular law theorem states that, with probability one, the empirical spectral distribution \(\frac{1}{n}(\delta _{\lambda _{n,1}}+\cdots+\delta _{\lambda _{n,n}})\) converges weakly as n→∞ to the uniform law over the unit disc {z∈ℂ,|z|1}. In this short paper, we provide an elementary argument that allows us to add a deterministic matrix M to (Xjk)1j,kn provided that Tr(MM*)=O(n2) and rank(M)=O(nα) with α<1. Conveniently, the argument is similar to the one used for the noncentral version of the Wigner and Marchenko–Pastur theorems.

Keywords

Random matrices Circular law 

Mathematics Subject Classification (2000)

15B52 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrew, A.L.: Eigenvalues and singular values of certain random matrices. J. Comput. Appl. Math. 30(2), 165–171 (1990) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bai, Z.D.: Circular law. Ann. Probab. 25(1), 494–529 (1997) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bai, Z.D.: Methodologies in spectral analysis of large-dimensional random matrices, a review. Stat. Sin. 9(3), 611–677 (1999). With comments by G.J. Rodgers and J.W. Silverstein; and a rejoinder by the author MATHGoogle Scholar
  4. 4.
    Bai, Z.D., Silverstein, J.W.: Spectral Analysis of Large Dimensional Random Matrices. Mathematics Monograph Series, vol. 2. Science Press, Beijing (2006) MATHGoogle Scholar
  5. 5.
    Bai, Z.D., Yin, Y.Q.: Limit of the smallest eigenvalue of a large-dimensional sample covariance matrix. Ann. Probab. 21(3), 1275–1294 (1993) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Benaych-Georges, F., Rao, R.N.: The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices. Preprint, 0910.2120 (2009)
  7. 7.
    Chafaï, D.: Aspects of large random Markov kernels. Stochastics 81(3–4), 415–429 (2009). MR MR2549497 MATHMathSciNetGoogle Scholar
  8. 8.
    Chafaï, D.: The Dirichlet Markov ensemble. J. Multivar. Anal. 101, 555–567 (2010) MATHCrossRefGoogle Scholar
  9. 9.
    Edelman, A.: The probability that a random real Gaussian matrix has k real eigenvalues, related distributions, and the circular law. J. Multivar. Anal. 60(2), 203–232 (1997) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Girko, V.L.: The circular law. Teor. Veroyatn. Primen. 29(4), 669–679 (1984) MATHMathSciNetGoogle Scholar
  11. 11.
    Götze, F., Tikhomirov, A.: The circular law for random matrices. Ann. Probab. (2010, to appear). arXiv:0709.3995 [math.PR]
  12. 12.
    Hwang, C.-R.: A brief survey on the spectral radius and the spectral distribution of large random matrices with i.i.d. entries. In: Random Matrices and Their Applications, Brunswick, Maine, 1984. Contemp. Math., vol. 50, pp. 145–152. Am. Math. Soc., Providence (1986). MR MR841088 (87m:60080) Google Scholar
  13. 13.
    Mehta, M.L.: Random Matrices and the Statistical Theory of Energy Levels. Academic Press, New York (1967) MATHGoogle Scholar
  14. 14.
    Pan, G., Zhou, W.: Circular law, extreme singular values and potential theory. J. Multivar. Anal. 101, 645–656 (2010) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Rudelson, M., Vershynin, R.: The Littlewood–Offord problem and invertibility of random matrices. Adv. Math. 218(2), 600–633 (2008). MR MR2407948 MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Silverstein, J.W.: The spectral radii and norms of large-dimensional non-central random matrices. Commun. Stat. Stoch. Models 10(3), 525–532 (1994) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Śniady, P.: Random regularization of Brown spectral measure. J. Funct. Anal. 193(2), 291–313 (2002) MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Tao, T., Vu, V.: Random matrices: the circular law. Commun. Contemp. Math. 10(2), 261–307 (2008). MR MR2409368 (2009d:60091) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Tao, T., Vu, V.: Random matrices: Universality of ESDs and the circular law. Ann. Probab. (2010, to appear). arXiv:0807.4898 [math.PR]
  20. 20.
    Thompson, R.C.: The behavior of eigenvalues and singular values under perturbations of restricted rank. Linear Algebra Appl. 13(1/2), 69–78 (1976). Collection of articles dedicated to Olga Taussky Todd MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Laboratoire d’Analyse et de Mathématiques AppliquéesUMR 8050 CNRS, Université Paris-Est Marne-la-ValléeCedex 2, Champs-sur-MarneFrance

Personalised recommendations