Journal of Theoretical Probability

, Volume 24, Issue 3, pp 746–755

# On the Uniqueness of the Kendall Generalized Convolution

Article

## Abstract

Kendall (Foundations of a theory of random sets, in Harding, E.F., Kendall, D.G. (eds.), pp. 322–376, Willey, New York, 1974) showed that the operation $$\diamond_{1}\colon \mathcal{P}_{+}^{2}\rightarrow \mathcal{P}_{+}$$ given by
$$\delta_x\diamond_1\delta_1=x\pi_2+(1-x)\delta_1,$$
where x∈[0,1] and π β is the Pareto distribution with the density function β s β−1 on the set [1,∞), defines a generalized convolution on ℘+. Kucharczak and Urbanik (Quasi-stable functions, Bull. Pol. Acad. Sci., Math. 22(3):263–268, 1974) noticed that also the following operation
$$\delta_x\diamond_{\alpha}\delta_1=x^{\alpha}\pi_{2\alpha}+\bigl(1-x^{\alpha}\bigr)\delta_1$$
defines generalized convolutions on ℘+. In this paper, we show that α convolutions are the only possible convolutions defined by the convex linear combination of two fixed measures. To be precise, we show that if :2→℘ is a generalized convolution defined by
$$\delta_x\diamond \delta_1=p(x)\lambda_1+\bigl(1-p(x)\bigr)\lambda_2,$$
for some fixed probability measures λ 1,λ 2 and some continuous function p :[0,1]→[0,1], p(0)=0=1−p(1), then there exists an α>0 such that p(x)=x α , = α , λ 1=π 2α and λ 2=δ 1. We present a similar result also for the corresponding weak generalized convolution.

## Keywords

Weakly stable distribution Generalized weak convolution Generalized convolution Pareto distribution

## Mathematics Subject Classification (2000)

60A10 60B05 60E05 60E07 60E10

## References

1. 1.
Jasiulis, B.H.: Limit property for regular and weak generalized convolution. J. Theor. Probab. 23(1), 315–327 (2010). doi:
2. 2.
Kendall, D.G.: Foundations of a theory of random sets. In: Harding, E.F., Kendall, D.G. (eds.) Stochastic Geometry, pp. 322–376. Willey, New York (1974) Google Scholar
3. 3.
Kingman, J.F.C.: Random walks with spherical symmetry. Acta Math. 109(1), 11–53 (1963)
4. 4.
Kucharczak, J., Urbanik, K.: Quasi-stable functions. Bull. Pol. Acad. Sci., Math. 22(3), 263–268 (1974)
5. 5.
Misiewicz, J.K.: Substable and pseudo-isotropic processes. Connections with the geometry of subspaces of L α-spaces. Dissertationes Mathematicae, 358 (1996) Google Scholar
6. 6.
Misiewicz, J.K.: Weak stability and generalized weak convolution for random vectors and stochastic processes. IMS Lecture Notes–Monograph Series Dynamics & Stochastics 48, 109–118 (2006)
7. 7.
Misiewicz, J.K., Oleszkiewicz, K., Urbanik, K.: Classes of measures closed under mixing and convolution. Weak stability. Studia Math. 167(3), 195–213 (2005)
8. 8.
Urbanik, K.: Generalized convolutions. Studia Math. 23, 217–245 (1964)
9. 9.
Urbanik, K.: Generalized convolutions IV. Studia Math. 83, 57–95 (1986)
10. 10.
Urbanik, K.: Analytical methods in probability theory. In: Transactions of the tenth Prague Conference on Information Theory, Statistical Decision Functions, Random Processes, pp. 151–169 (1988) Google Scholar
11. 11.
Urbanik, K.: Anti-irreducible probability measures. Probab. Math. Stat. 14(1), 89–113 (1993)