Spectral Representation of Gaussian Semimartingales

Article

Abstract

The aim of the present paper is to characterize the spectral representation of Gaussian semimartingales. That is, we provide necessary and sufficient conditions on the kernel K for Xt=Kt(s) dNs to be a semimartingale. Here, N denotes an independently scattered Gaussian random measure on a general space S. We study the semimartingale property of X in three different filtrations. First, the ℱX-semimartingale property is considered, and afterwards the ℱX,∞-semimartingale property is treated in the case where X is a moving average process and ℱtX,∞=σ(Xs:s∈(−∞,t]). Finally, we study a generalization of Gaussian Volterra processes. In particular, we provide necessary and sufficient conditions on K for the Gaussian Volterra process −∞tKt(s) dWs to be an ℱW,∞-semimartingale (W denotes a Wiener process). Hereby we generalize a result of Knight (Foundations of the Prediction Process, 1992) to the nonstationary case.

Keywords

Semimartingales Gaussian processes Volterra processes Stationary processes Moving average processes 

Mathematics Subject Classification (2000)

60G15 60G10 60G48 60G57 

References

  1. 1.
    Alòs, E., Mazet, O., Nualart, D.: Stochastic calculus with respect to Gaussian processes. Ann. Probab. 29(2), 766–801 (2001) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Barndorff-Nielsen, O.E., Schmiegel, J.: Ambit processes: with applications to turbulence and tumour growth. In: Proceedings of Abel Symposium on Stochastic Analysis and Applications, vol. 2, pp. 93–124. Springer, Berlin (2007) Google Scholar
  3. 3.
    Basse, A.: Gaussian moving averages and semimartingales. Electron. J. Probab. 13(39), 1140–1165 (2008) MathSciNetGoogle Scholar
  4. 4.
    Basse, A.: Representation of Gaussian semimartingales with application to the covariance function. Stochatics (2009, in press) (available from http://www.imf.au.dk/publs?id=674)
  5. 5.
    Basse, A., Pedersen, J.: Lévy driven moving averages and semimartingales. Stoch. Process. Appl. 119(9), 2970–2991 (2009) MATHCrossRefGoogle Scholar
  6. 6.
    Cheridito, P.: Gaussian moving averages, semimartingales and option pricing. Stochastic Process. Appl. 109(1), 47–68 (2004) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Cherny, A.: When is a moving average a semimartingale? In: MaPhySto 2001, p. 28 (2001) Google Scholar
  8. 8.
    Decreusefond, L.: Stochastic integration with respect to Volterra processes. Ann. Inst. H. Poincaré Probab. Stat. 41(2), 123–149 (2005) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Doob, J.L.: Stochastic Processes. Wiley Classics Library. Wiley, New York (1990). Reprint of the 1953 original, Wiley-Interscience MATHGoogle Scholar
  10. 10.
    Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, 2nd edn. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 288. Springer, Berlin (2003) MATHGoogle Scholar
  11. 11.
    Jeulin, T., Yor, M.: Moyennes mobiles et semimartingales. In: Séminaire de Probabilités XXVII. Lecture Notes in Mathematics, vol. 1557, pp. 53–77. Springer, New York (1993) CrossRefGoogle Scholar
  12. 12.
    Knight, F.B.: Foundations of the Prediction Process. Oxford Studies in Probability, vol. 1. Clarendon/Oxford University Press, New York/Oxford (1992) MATHGoogle Scholar
  13. 13.
    Kuelbs, J.: A representation theorem for symmetric stable processes and stable measures on H. Z. Wahrsch. Verw. Gebiete 26, 259–271 (1973) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Marquardt, T.: Fractional Lévy processes with an application to long memory moving average processes. Bernoulli 12(6), 1099–1126 (2006) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Protter, P.E.: Stochastic Integration and Differential Equations, 2nd edn. Applications of Mathematics (New York). Stochastic Modelling and Applied Probability, vol. 21. Springer, Berlin (2004) MATHGoogle Scholar
  16. 16.
    Rajput, B.S., Rosiński, J.: Spectral representations of infinitely divisible processes. Probab. Theory Relat. Fields 82(3), 451–487 (1989) MATHCrossRefGoogle Scholar
  17. 17.
    Rogers, L.C.G.: Arbitrage with fractional Brownian motion. Math. Finance 7(1), 95–105 (1997) MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Stricker, C.: Semimartingales gaussiennes—application au problème de l’innovation. Z. Wahrsch. Verw. Gebiete 64(3), 303–312 (1983) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Mathematical SciencesUniversity of AarhusÅrhus CDenmark

Personalised recommendations