Journal of Theoretical Probability

, Volume 23, Issue 4, pp 1015–1038 | Cite as

Canonical Moments and Random Spectral Measures

Article

Abstract

We study some connections between the random moment problem and random matrix theory. A uniform draw in a space of moments can be lifted into the spectral probability measure of the pair (A,e), where A is a random matrix from a classical ensemble, and e is a fixed unit vector. This random measure is a weighted sampling among the eigenvalues of A. We also study the large deviations properties of this random measure when the dimension of the matrix increases. The rate function for these large deviations involves the reversed Kullback information.

Keywords

Random matrices Unitary ensemble Jacobi ensemble Spectral measure Canonical moments Large deviations 

Mathematics Subject Classification (2000)

15A52 60G57 60F10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bai, Z.D.: Methodologies in spectral analysis of large dimensional random matrices, a review. Statist. Sinica 9, 611–677 (1999) MATHMathSciNetGoogle Scholar
  2. 2.
    Bai, Z.D., Miao, B.Q., Pan, G.M.: On asymptotics of eigenvectors of large sample covariance matrix. Ann. Probab. 35(4), 1532–1572 (2007) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Ben Arous, G., Guionnet, A.: Large deviations for Wigner’s law and Voiculescu’s non-commutative entropy. Probab. Theory Related Fields 108(4), 517–542 (1997) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Birke, M., Dette, H.: A note on random orthogonal polynomial on a compact interval. Proc. Am. Math. Soc. 137, 3511–3522 (2009) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Chang, F.C., Kemperman, J.H.B., Studden, W.J.: A normal limit theorem for moment sequences. Ann. Probab. 21(3), 1295–1309 (1993) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Collins, B., Sniady, P.: New scaling of Itzykson–Zuber integrals. Ann. Inst. H. Poincaré Probab. Statist. 43, 139–146 (2007) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Dawson, D.A., Feng, S.: Large deviations for the Fleming–Viot process with neutral mutation and selection. II. Stochastic Process. Appl. 92(1), 131–162 (2001) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Dawson, D.A., Feng, S.: Asymptotic behavior of the Poisson–Dirichlet distribution for large mutation rate. Ann. Appl. Probab. 16(2), 562–582 (2006) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, 2nd edn. Springer, Berlin (1998) MATHGoogle Scholar
  10. 10.
    Dette, H., Gamboa, F.: Asymptotic properties of the algebraic moment range process. Acta Math. Hungar. 116, 247–264 (2007) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Dette, H., Studden, W.: The Theory of Canonical Moments with Applications in Statistics, Probability, and Analysis. Wiley Series in Probability and Statistics. Wiley, New York (1997) MATHGoogle Scholar
  12. 12.
    Dueñez, E.: Random matrix ensembles associated to compact symmetric spaces. Comm. Math. Phys. 244(1), 29–61 (2004) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Eichelsbacher, P., Stolz, M.: Large deviations for random matrix ensembles in mesoscopic physics. Markov Process. Related Fields 14, 207–232 (2008) MATHMathSciNetGoogle Scholar
  14. 14.
    Forrester, P.J.: Log-Gases and Random Matrices. Book available online at http://www.ms.unimelb.edu.au/~matpjf/matpjf.html
  15. 15.
    Gamboa, F., Lozada-Chang, L.V.: Large deviations for random power moment problem. Ann. Probab. 32, 2819–2837 (2004) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Gamboa, F., Rouault, A.: Large deviations for random spectral measures and sum rules. arXiv:0804.4322v1
  17. 17.
    Gamboa, F., Rouault, A., Zani, M.: A functional large deviation principle for quadratic forms of Gaussian stationary processes. Statist. Probab. Lett. 43, 299–308 (1999) MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Ganesh, A.J., O’Connell, N.: A large deviation principle for Dirichlet posteriors. Bernoulli 6(6), 1021–1034 (2000) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Guionnet, A., Maida, M.: A Fourier view on the R-transform and related asymptotics of spherical integrals. J. Funct. Anal. 222(2), 435–490 (2005) MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Hiai, F., Petz, D.: A large deviation theorem for the empirical eigenvalue distribution of random unitary matrices. Ann. Inst. H. Poincaré Probab. Statist. 36(1), 71–85 (2000) MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Hiai, F., Petz, D.: The Semicircle Law, Free Random Variables and Entropy, Mathematical Surveys and Monographs, vol. 77. Am. Math. Soc., Providence (2000) MATHGoogle Scholar
  22. 22.
    Hiai, F., Petz, D.: Large deviations for functions of two random projection matrices. Acta Sci. Math. (Szeged) 72, 581–609 (2006) MATHMathSciNetGoogle Scholar
  23. 23.
    Hiai, F., Petz, D., Ueda, Y.: Free transportation cost inequalities via random matrix approximation. Probab. Theory Related Fields 130(2), 199–221 (2004) MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Karlin, S., Shapley, L.S.: Geometry of moment spaces. Mem. Am. Math. Soc. 1953(12), 93 (1953) MathSciNetGoogle Scholar
  25. 25.
    Karlin, S., Studden, W.J.: Tchebycheff Systems: With Applications in Analysis and Statistics. Pure and Applied Mathematics, vol. XV. Wiley, New York (1966) MATHGoogle Scholar
  26. 26.
    Killip, R., Nenciu, I.: Matrix models for circular ensembles. Int. Math. Res. Not. 50, 2665–2701 (2004) CrossRefMathSciNetGoogle Scholar
  27. 27.
    Lozada-Chang, L.V.: Large deviations on moment spaces. Electron. J. Probab. 10, 662–690 (2005) MathSciNetGoogle Scholar
  28. 28.
    Maida, M.: Large deviations for the largest eigenvalue of rank one deformations of Gaussian ensembles. Electron. J. Probab. 12, 1131–1150 (2007) MATHMathSciNetGoogle Scholar
  29. 29.
    Mehta, M.L.: Random Matrices, 3rd edn. Pure and Applied Mathematics, vol. 142. Elsevier, Amsterdam (2004) MATHGoogle Scholar
  30. 30.
    Najim, J.: A Cramér type theorem for weighted random variables. Electron. J. Probab. 7(4), 1–32 (2002) MathSciNetGoogle Scholar
  31. 31.
    Orlov, A.: New solvable matrix integrals—U(n) case. Nonlinear Physics: Theory and Experiment, II Gallipoli 2002. pp. 94–100. World Sci. Publ., River Edge (2003) CrossRefGoogle Scholar
  32. 32.
    Simon, B.: New sections intended for the second edition. Available at http://www.math.caltech.edu/opuc/newsection13-3.pdf, 2005
  33. 33.
    Simon, B.: OPUC on one foot. Bull. Am. Math. Soc. (N.S.) 42(4), 431–460 (2005) MATHCrossRefGoogle Scholar
  34. 34.
    Simon, B.: Orthogonal Polynomials on the Unit Circle. Part 1: Classical Theory. Colloquium Publications. American Mathematical Society, vol. 54. Am. Math. Soc., Providence (2005) MATHGoogle Scholar
  35. 35.
    Simon, B.: Orthogonal Polynomials on the Unit Circle. Part 2: Spectral Theory. Colloquium Publications. American Mathematical Society, vol. 51. Am. Math. Soc., Providence (2005) MATHGoogle Scholar
  36. 36.
    Simon, B.: CMV matrices: five years after. J. Comput. Appl. Math. 208(1), 120–154 (2007) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institut de MathématiquesUniversité de Toulouse, Université Paul SabatierToulouse CedexFrance
  2. 2.Laboratoire de Mathématiques de VersaillesUniversité Versailles-Saint-QuentinVersaillesFrance

Personalised recommendations