Journal of Theoretical Probability

, Volume 23, Issue 4, pp 972–1001 | Cite as

Regularity of Intersection Local Times of Fractional Brownian Motions

Article

Abstract

Let \(B^{\alpha_{i}}\) be an (N i ,d)-fractional Brownian motion with Hurst index α i (i=1,2), and let \(B^{\alpha_{1}}\) and \(B^{\alpha_{2}}\) be independent. We prove that, if \(\frac{N_{1}}{\alpha_{1}}+\frac{N_{2}}{\alpha_{2}}>d\) , then the intersection local times of \(B^{\alpha_{1}}\) and \(B^{\alpha_{2}}\) exist, and have a continuous version. We also establish Hölder conditions for the intersection local times and determine the Hausdorff and packing dimensions of the sets of intersection times and intersection points.

One of the main motivations of this paper is from the results of Nualart and Ortiz-Latorre (J. Theor. Probab. 20:759–767, 2007), where the existence of the intersection local times of two independent (1,d)-fractional Brownian motions with the same Hurst index was studied by using a different method. Our results show that anisotropy brings subtle differences into the analytic properties of the intersection local times as well as rich geometric structures into the sets of intersection times and intersection points.

Keywords

Intersection local time Fractional Brownian motion Joint continuity Hölder condition Hausdorff dimension Packing dimension 

Mathematics Subject Classification (2000)

60G15 60J55 60G18 60F25 28A80 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adler, R.J.: The Geometry of Random Fields. Wiley, New York (1981) MATHGoogle Scholar
  2. 2.
    Ayache, A., Wu, D., Xiao, Y.: Joint continuity of the local times of fractional Brownian sheets. Ann. Inst. H. Poincaré Probab. Stat. 44, 727–748 (2008) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Baraka, D., Mountford, T.: A law of the iterated logarithm for fractional Brownian motions. In: Séminaire de Probabilités XLI. Lecture Notes in Math., vol. 1934, pp. 161–179. Springer, Berlin (2008) CrossRefGoogle Scholar
  4. 4.
    Cuzick, J., DuPreez, J.: Joint continuity of Gaussian local times. Ann. Probab. 10, 810–817 (1982) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Falconer, K.J.: Fractal Geometry—Mathematical Foundations and Applications. Wiley, Chichester (1990) MATHGoogle Scholar
  6. 6.
    Geman, D., Horowitz, J.: Occupation densities. Ann. Probab. 8, 1–67 (1980) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Geman, D., Horowitz, J., Rosen, J.: A local time analysis of intersections of Brownian paths in the plane. Ann. Probab. 12, 86–107 (1984) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Hu, Y., Nualart, D.: Renormalized self-intersection local time for fractional Brownian motion. Ann. Probab. 33, 948–983 (2005) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Khoshnevisan, D.: Multiparameter Processes: An Introduction to Random Fields. Springer, New York (2002) MATHGoogle Scholar
  10. 10.
    LeGall, J.F.: Sur le temps local d’intersection du mouvement Brownien plan et la méthode de renormalisation de Varadhan. In: Séminaire de Probabilités XIX. Lecture Notes in Math., vol. 1123, pp. 314–331. Springer, Berlin (1985) Google Scholar
  11. 11.
    Monrad, D., Pitt, L.D.: Local nondeterminism and Hausdorff dimension. In: Cinlar, E., Chung, K.L., Getoor, R.K. (eds.) Progress in Probability and Statistics, pp. 163–189. Seminar on Stochastic Processes, 1986. Birkhauser, Boston (1987) Google Scholar
  12. 12.
    Nualart, D., Ortiz-Latorre, S.: Intersection local time for two independent fractional Brownian motions. J. Theor. Probab. 20, 759–767 (2007) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Pitt, L.D.: Local times for Gaussian vector fields. Indiana Univ. Math. J. 27, 309–330 (1978) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Pitt, L.D., Tran, L.T.: Local sample path properties of Gaussian fields. Ann. Probab. 7, 477–493 (1979) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Rogers, C.A., Taylor, S.J.: Functions continuous and singular with respect to a Hausdorff measure. Mathematika 8, 1–31 (1961) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Rosen, J.: The intersection local time of fractional Brownian motion in the plane. J. Multivar. Anal. 23, 37–46 (1987) MATHCrossRefGoogle Scholar
  17. 17.
    Wolpert, R.: Wiener path intersections and local time. J. Funct. Anal. 30, 329–340 (1978) MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Wolpert, R.: Local time and a practice picture for Euclidean field theory. J. Funct. Anal. 30, 341–357 (1978) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Xiao, Y.: Hölder conditions for the local times and the Hausdorff measure of the level sets of Gaussian random fields. Probab. Theory Relat. Fields 109, 129–157 (1997) MATHCrossRefGoogle Scholar
  20. 20.
    Xiao, Y.: Hitting probabilities and polar sets for fractional Brownian motion. Stoch. Stoch. Rep. 66, 121–151 (1999) MATHGoogle Scholar
  21. 21.
    Xiao, Y.: Properties of local nondeterminism of Gaussian and stable random fields and their applications. Ann. Fac. Sci. Toulouse Math. XV, 157–193 (2006) Google Scholar
  22. 22.
    Xiao, Y.: Strong local nondeterminism of Gaussian random fields and its applications. In: Lai, T.-L., Shao, Q.-M., Qian, L. (eds.) Asymptotic Theory in Probability and Statistics with Applications, pp. 136–176. Higher Education, Beijing (2007) Google Scholar
  23. 23.
    Xiao, Y.: Sample path properties of anisotropic Gaussian random fields. In: Khoshnevisan, D., Rassoul-Agha, F. (eds.) A Minicourse on Stochastic Partial Differential Equations. Lecture Notes in Math., vol. 1962, pp. 145–212. Springer, New York (2009) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Mathematical SciencesUniversity of Alabama in HuntsvilleHuntsvilleUSA
  2. 2.Department of Statistics and ProbabilityMichigan State UniversityEast LansingUSA

Personalised recommendations