Journal of Theoretical Probability

, Volume 23, Issue 1, pp 85–108 | Cite as

A Few Remarks on the Operator Norm of Random Toeplitz Matrices

  • Radosław AdamczakEmail author


We present some results concerning the almost sure behavior of the operator norm of random Toeplitz matrices, including the law of large numbers for the norm, normalized by its expectation (in the i.i.d. case). As tools we present some concentration inequalities for suprema of empirical processes, which are refinements of recent results by Einmahl and Li.


Random Toeplitz matrices 

Mathematics Subject Classification (2000)

15A52 60F15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adamczak, R.: A tail inequality for suprema of unbounded empirical processes with applications to Markov chains. Electron. J. Probab. 13(34), 1000–1034 (2008) zbMATHMathSciNetGoogle Scholar
  2. 2.
    Bai, Z.D.: Methodologies in spectral analysis of large-dimensional random matrices, a review. Stat. Sin. 9(3), 611–677 (1999) zbMATHGoogle Scholar
  3. 3.
    Bose, A., Sen, A.: Spectral norm of random large dimensional noncentral Toeplitz and Hankel matrices. Electron. Commun. Probab. 12, 29–35 (2007) MathSciNetGoogle Scholar
  4. 4.
    Bryc, W., Dembo, A., Jiang, T.: Spectral measure of large Hankel, Markov and Toeplitz matrices. Ann. Probab. 34(1), 1–38 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    de Acosta, A., Kuelbs, J., Ledoux, M.: An inequality for the law of the iterated logarithm. In: Probability in Banach spaces, IV, Oberwolfach, 1982. Lecture Notes in Math., vol. 990, pp. 1–29. Springer, Berlin (1983) CrossRefGoogle Scholar
  6. 6.
    Einmahl, U., Li, D.: Characterization of LIL behavior in Banach space. Trans. Am. Math. Soc. 360, 6677–6693 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Fuk, D.H., Nagaev, S.V.: Probabilistic inequalities for sums of independent random variables. Teor. Veroyatnost. Primenen. 16, 660–675 (1971) MathSciNetGoogle Scholar
  8. 8.
    Giné, E., Latała, R., Zinn, J.: Exponential and moment inequalities for U-statistics. In: High Dimensional Probability II. Progr. Probab., vol. 47, pp. 13–38. Birkhäuser, Boston (2000) Google Scholar
  9. 9.
    Hammond, C., Miller, S.J.: Distribution of eigenvalues for the ensemble of real symmetric Toeplitz matrices. J. Theor. Probab. 18, 537–566 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Klein, T., Rio, E.: Concentration around the mean for maxima of empirical processes. Ann. Probab. 33, 1060–1077 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Ledoux, M., Talagrand, M.: Probability in Banach Spaces. Isoperimetry and Processes. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 23(3). Springer, Berlin (1991) zbMATHGoogle Scholar
  12. 12.
    Meckes, M.: On the spectral norm of a random Toeplitz matrix. Electron. Commun. Probab. 12, 315–325 (2007) zbMATHMathSciNetGoogle Scholar
  13. 13.
    Talagrand, M.: New concentration inequalities in product spaces. Invent. Math. 126(3), 505–563 (1996) zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Van der Vaart, A.W., Wellner, J.A.: Weak Convergence and Empirical Processes: With Applications to Statistics. Springer Series in Statistics. Springer, New York (1996) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institute of MathematicsUniversity of WarsawWarszawaPoland

Personalised recommendations