Advertisement

Journal of Theoretical Probability

, Volume 22, Issue 2, pp 375–401 | Cite as

Multifractional, Multistable, and Other Processes with Prescribed Local Form

  • K. J. FalconerEmail author
  • J. Lévy Véhel
Article

Abstract

We present a general method for constructing stochastic processes with prescribed local form, encompassing examples such as variable amplitude multifractional Brownian and multifractional α-stable processes. We apply the method to Poisson sums to construct multistable processes, that is, processes that are locally α(t)-stable but where the stability index α(t) varies with t. In particular we construct multifractional multistable processes, where both the local self-similarity and stability indices vary.

Keywords

Stochastic process Localisable Multifractional Multistable Stable process 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ayache, A.: The generalized multifractional field: a nice tool for the study of the generalized multifractional Brownian motion. J. Fourier Anal. Appl. 8, 581–601 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Ayache, A., Lévy Véhel, J.: The generalized multifractional Brownian motion. Stat. Inference Stoch. Process. 3, 7–18 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Benassi, A., Jaffard, S., Roux, D.: Gaussian processes and pseudodifferential elliptic operators. Rev. Mat. Iberoam. 13, 19–89 (1997) zbMATHMathSciNetGoogle Scholar
  4. 4.
    Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968) zbMATHGoogle Scholar
  5. 5.
    Eisen, M.: Introduction to Mathematical Probability Theory. Prentice Hall, Englewood Cliffs (1969) zbMATHGoogle Scholar
  6. 6.
    Embrechts, P., Maejima, M.: Selfsimilar Processes. Princeton University Press, Princeton (2002) zbMATHGoogle Scholar
  7. 7.
    Falconer, K.J.: Fractal Geometry—Mathematical Foundations and Applications, 2nd edn. Wiley, New York (2003) zbMATHGoogle Scholar
  8. 8.
    Falconer, K.J.: Tangent fields and the local structure of random fields. J. Theor. Probab. 15, 731–750 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Falconer, K.J.: The local structure of random processes. J. Lond. Math. Soc. (2) 67, 657–672 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Herbin, E.: From N-parameter fractional Brownian motions to N-parameter multifractional Brownian motion. Rocky Mt. J. Math. 36, 1249–1284 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kingman, J.F.C.: Poisson Processes. Oxford University Press, London (1993) zbMATHGoogle Scholar
  12. 12.
    Mandelbrot, B.B., Van Ness, J.: Fractional Brownian motion, fractional noises and applications. SIAM Rev. 10, 422–437 (1968) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Peltier, R.F., Lévy Véhel, J.: Multifractional Brownian motion: definition and preliminary results. Rapport de recherche de l’INRIA, No. 2645 (1995). Available at: http://www-rocq1.inria.fr/fractales/index.php?page=publications
  14. 14.
    Pollard, D.: Convergence of Stochastic Processes. Springer, Berlin (1984) zbMATHGoogle Scholar
  15. 15.
    Rogers, L.C.G., Williams, D.: Diffusions, Markov Processes and Martingales, 2nd edn., vol. 1. Cambridge University Press, Cambridge (2000) Google Scholar
  16. 16.
    Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes. Chapman and Hall, London (1994) zbMATHGoogle Scholar
  17. 17.
    Stoev, S., Taqqu, M.S.: Stochastic properties of the linear multifractional stable motion. Adv. Appl. Probab. 36, 1085–1115 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Stoev, S., Taqqu, M.S.: Path properties of the linear multifractional stable motion. Fractals, 13, 157–178 (2005) CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Mathematical InstituteUniversity of St AndrewsSt Andrews, FifeUK
  2. 2.Projet FractalesINRIA RocquencourtLe Chesnay CedexFrance

Personalised recommendations