Journal of Theoretical Probability

, Volume 21, Issue 2, pp 267–286 | Cite as

A Note on Asymptotic Normality of Kernel Estimation for Linear Random Fields on Z2



This note considers the kernel estimation of a linear random field on Z2. Instead of imposing certain mixing conditions on the random fields, it is assumed that the weights of the innovations satisfy a summability property. By building a martingale decomposition based on a suitable filtration, asymptotic normality is proven for the kernel estimator of the marginal density of the random field.


Central limit theorem Kernel estimation Linear random field 

Mathematics Subject Classification (2000)

60F05 62G07 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bradley, R.C.: Basic properties of strong mixing conditions. In: Eberlein, E., Taqqu, M.S. (eds.) Dependence in Probability and Statistics, pp. 162–192. Birkhäuser, Boston (1986) Google Scholar
  2. 2.
    Cheng, T.L., Ho, H.C.: Asymptotic normality for non-linear functionals of non-causal linear processes with summable weights. J. Theor. Probab. 18, 345–358 (2005) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Cheng, T.L., Ho, H.C.: Central limit theorems for instantaneous filters of linear random fields on Z 2. In: Hsiung, A.C., Ying, Z., Zhang, C.H. (eds.) Random Walks, Sequential Analysis and Related Topics—A Festschrift in Honor of Y.S. Chow, pp. 71–84. World Scientific, Singapore (2007) Google Scholar
  4. 4.
    Doukhan, P.: Mixing: Properties and Examples. Lecture Notes in Statistics, vol. 85. Springer, Berlin (1994) MATHGoogle Scholar
  5. 5.
    Doukhan, P., Lang, G., Surgailis, D.: Asymptotics of weighted empirical processes of linear fields with long-range dependence. Ann. Inst. H. Poincaré 38, 879–896 (2002) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Giraitis, L., Surgailis, D.: Central limit theorem for the empirical process of a linear sequence with long memory. J. Stat. Plan. Infer. 80, 81–93 (1999) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Guyon, X.: Estimation d’un champ par pseudo-varisenmblable conditionelle: etude asymptotique et application au cas Markovien. In: Proc. 6th Franco-Belgian Meeting of Statisticians (1987) Google Scholar
  8. 8.
    Guyon, X.: Random Fields on a Network. Springer, Berlin (1995) MATHGoogle Scholar
  9. 9.
    Ho, H.-C.: On central and noncentral limit theorems in density estimation for sequences of long-range dependence. Stoch. Process. Appl. 63, 153–174 (1996) MATHCrossRefGoogle Scholar
  10. 10.
    Ho, H.-C., Hsing, T.: On the asymptotic expansion of the empirical process of long-memory moving averages. Ann. Stat. 24, 992–1024 (1996) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Ho, H.-C., Hsing, T.: Limit theorems for functional of moving averages. Ann. Probab. 25, 1636–1669 (1997) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Parzen, E.: On the estimation of a probability density and the mode. Ann. Math. Stat. 33, 1965–1976 (1962) CrossRefMathSciNetGoogle Scholar
  13. 13.
    Pham, T.D., Tran, T.T.: Some mixing properties of time series models. Stoch. Process. Appl. 19, 297–303 (1985) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Robinson, P.M.: Nonparametric estimators for time series. J. Time Ser. Anal. 4, 185–207 (1983) MATHMathSciNetGoogle Scholar
  15. 15.
    Rosenblatt, M.: Remarks on some nonparametric estimates of a density function. Ann. Math. Stat. 27, 832–837 (1956) CrossRefMathSciNetGoogle Scholar
  16. 16.
    Rosenblatt, M.: Central limit theorem for stationary processes. In: Proc. Sixth Berkeley Symp., vol. 2 pp. 551–561 (1972) Google Scholar
  17. 17.
    Rosenblatt, M.: Stationary Sequences and Random Fields. Birkhauser, Boston (1985) MATHGoogle Scholar
  18. 18.
    Tran, L.T.: Kernel density estimation on random fields. J. Multivar. Anal. 34, 37–53 (1990) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Tran, L.T., Yakowitz, S.: Nearest neighbor estimators for random fields. J. Multivar. Anal. 44, 23–46 (1993) MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Withers, C.S.: Conditions for linear processes to be strong mixing. Z. Wahrscheinlichkeitstheor. Verw. Geb. 57, 477–480 (1981) MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Wu, W.B., Mielniczuk, J.: Kernel density estimation for linear processes. Ann. Stat. 30, 1441–1459 (2002) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of MathematicsNational Changhua University of EducationChanghuaTaiwan
  2. 2.Institute of Statistical Science, Academia Sinica and Department of FinanceNational Taiwan UniversityTaipeiTaiwan
  3. 3.Department of Mathematics and StatisticsUniversity of CalgaryCalgaryCanada

Personalised recommendations