Journal of Theoretical Probability

, Volume 21, Issue 3, pp 745–771 | Cite as

Penalization for Birth and Death Processes

  • Pierre Debs
  • Mihai GradinaruEmail author


In this paper we study a transient birth and death Markov process penalized by its sojourn time in 0. Under the new probability measure the original process behaves as a recurrent birth and death Markov process. We also show, in a particular case, that an initially recurrent birth and death process behaves as a transient birth and death process after penalization with the event that it can reach zero in infinite time. We illustrate some of our results with the Bessel random walk example.


Birth and death Markov processes Penalization Sojourn time Dynkin’s formula Random walk Brownian motion with drift Bessel chain and process Change of probability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Debs, P.: Pénalisation de la marche aléatoire standard par une fonction du maximum unilatère, du temps local en zéro et de la longueur des excursions. Preprint IECN (2007) Google Scholar
  2. 2.
    Feller, W.: An Introduction to Probability Theory and its Applications, vol. 1, 3rd edn. Wiley, New York (1970) Google Scholar
  3. 3.
    Gradstein, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products. Academic, New York (1980) Google Scholar
  4. 4.
    Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, New York (1991) zbMATHGoogle Scholar
  5. 5.
    Klebaner, F.C.: Introduction to Stochastic Calculus with Applications, 2nd edn. Imperial College Press, London (2005) zbMATHGoogle Scholar
  6. 6.
    Lawler, G.: Introduction to Stochastic Processes, 2nd edn. Chapman & Hall/CRC, Boca Raton (2006) zbMATHGoogle Scholar
  7. 7.
    Le Gall, J.-F.: Une approche élémentaire des théorémes de décomposition de Williams. In: Séminaire de Probabilités, XX, 1984/85. Lecture Notes in Math., vol. 1204, pp. 447–464. Springer, Berlin (1986) CrossRefGoogle Scholar
  8. 8.
    Mishchenko, A.S.: A discrete Bessel process and its properties. Theory Probab. Appl. 50, 700–709 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Norris, J.: Markov Chains, 2nd printing. Cambridge University Press, Cambridge (1998) Google Scholar
  10. 10.
    Resnick, S.I.: Adventures in Stochastic Processes, 4th printing. Birkhäuser, Boston (2005) Google Scholar
  11. 11.
    Roynette, B., Yor, M.: Penalising Brownian Paths: Rigorous Results and Meta-Theorems. Astérisque (2007, to appear) Google Scholar
  12. 12.
    Roynette, B., Vallois, P., Yor, M.: Pénalisations et quelques extensions du théorème de Pitman, relatives au mouvement brownien et à son maximum unilatère. In: Séminaire de Probabilités XXXVIII: In memoriam Paul-André Meyer. Lecture Notes in Math., vol. 1874, pp. 305–336. Springer, Berlin (2006) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Institut Élie Cartan NancyVandœuvre-lès-Nancy CedexFrance
  2. 2.Institut de Recherche Mathematique de RennesRennes CedexFrance

Personalised recommendations