Journal of Theoretical Probability

, Volume 21, Issue 2, pp 449–458 | Cite as

The FKG Inequality for Partially Ordered Algebras

  • Siddhartha Sahi


The FKG inequality asserts that for a distributive lattice with log-supermodular probability measure, any two increasing functions are positively correlated. In this paper we extend this result to functions with values in partially ordered algebras, such as algebras of matrices and polynomials.


FKG inequality Distributive lattice Ahlswede-Daykin inequality Correlation inequality Partially ordered algebras 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahlswede, R., Daykin, D.: An inequality for the weights of two families of sets, their unions and intersections. Z. Wahrsch. Verwandte Geb. 43, 183–185 (1978) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Alon, N., Spencer, J.: The Probabilistic Method. Wiley, New York (1992) zbMATHGoogle Scholar
  3. 3.
    Bricmont, J., Fontaine, J.-R., Lebowitz, J., Lieb, E., Spencer, T.: Lattice systems with a continuous symmetry, I. Commun. Math. Phys. 78(2), 281–302 (1980) CrossRefMathSciNetGoogle Scholar
  4. 4.
    Bricmont, J., Fontaine, J.-R., Lebowitz, J., Lieb, E., Spencer, T.: Lattice systems with a continuous symmetry, II. Commun. Math. Phys. 78(3), 363–371 (1981) CrossRefMathSciNetGoogle Scholar
  5. 5.
    Bricmont, J., Fontaine, J.-R., Lebowitz, J., Lieb, E., Spencer, T.: Lattice systems with a continuous symmetry, III. Commun. Math. Phys. 78(4), 545–566 (1981) CrossRefMathSciNetGoogle Scholar
  6. 6.
    Caffarelli, L.: Monotonicity properties of optimal transportation and the FKG and related inequalities. Commun. Math. Phys. 214(3), 547–563 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Den Hollander, W., Keane, M.: Inequalities of FKG type. Physica A 138, 167–182 (1986) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Fortuin, C., Kasteleyn, P., Ginibre, J.: Correlation inequalities on some partially ordered sets. Commun. Math. Phys. 22, 89–103 (1971) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Graham, R.L.: Applications of the FKG inequality and its relatives. In: Mathematical Programming: The State of the Art, pp. 115–131. Springer, Berlin (1983) Google Scholar
  10. 10.
    Glimm, J., Jaffe, A.: Quantum Physics: A Functional Integral Point of View, 2nd edn. Springer, New York (1987) Google Scholar
  11. 11.
    Harris, T.: A lower bound for the critical probability in a certain percolation process. Proc. Cam. Philos. Soc. 56, 13–20 (1960) zbMATHCrossRefGoogle Scholar
  12. 12.
    Holley, R.: Remarks on the FKG inequalities. Commun. Math. Phys. 36, 227–231 (1974) CrossRefMathSciNetGoogle Scholar
  13. 13.
    Karlin, S., Rinott, Y.: A generalized Cauchy-Binet formula and applications to total positivity and majorization. J. Multivar. Anal. 27, 284–299 (1988) zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Lebowitz, J.: Bounds on the correlations and analyticity properties of ferromagnetic Ising spin systems. Commun. Math. Phys. 28, 313–321 (1972) CrossRefMathSciNetGoogle Scholar
  15. 15.
    Percus, J.: Correlation inequalities for Ising spin lattices. Commun. Math. Phys. 40, 283–308 (1975) CrossRefMathSciNetGoogle Scholar
  16. 16.
    Preston, C.: A generalization of the FKG inequalities. Commun. Math. Phys. 36, 233–241 (1974) CrossRefMathSciNetGoogle Scholar
  17. 17.
    Richards, D.: Algebraic method toward higher-order probability inequalities II. Ann. Probab. 32, 1509–1544 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Rinott, Y., Saks, M.: Correlation inequalities and a conjecture for permanents. Combinatorica 13, 269–277 (1993) zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Sahi, S.: Higher correlation inequalities. Combinatorica (to appear) Google Scholar
  20. 20.
    Sahi, S.: Correlation inequalities for partially ordered algebras, to appear in a volume in honor of Peter Fishburn, Springer Google Scholar
  21. 21.
    Sarkar, T.: Some lower bounds of reliability. Technical Report 124, Dept. Oper. Res. and Stat., Stanford University (1969) Google Scholar
  22. 22.
    Shepp, L.A.: The XYZ conjecture and the FKG inequality. Ann. Probab. 10, 824–827 (1982) zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    van den Berg, J., Häggström, O., Kahn, J.: Some conditional correlation inequalities for percolation and related processes. Rand. Struct. Algorithms 29, 417–435 (2006) zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of MathematicsRutgers UniversityNew BrunswickUSA

Personalised recommendations