Journal of Theoretical Probability

, Volume 19, Issue 4, pp 931–949 | Cite as

Multiplicative Decompositions and Frequency of Vanishing of Nonnegative Submartingales

  • Ashkan NikeghbaliEmail author


In this paper, we establish a multiplicative decomposition formula for nonnegative local martingales and use it to characterize the set of continuous local submartingales Y of the form Y = N + A, where the measure dA is carried by the set of zeros of Y. In particular, we shall see that in the set of all local submartingales with the same martingale part in the multiplicative decomposition, these submartingales are the smallest ones. We also study some integrability questions in the multiplicative decomposition and interpret the notion of saturated sets in the light of our results.


random times submartingales general theory of stochastic processes 

2000 Mathematics Subject Classification

05C38 15A15 05A15 15A18 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Azéma J. (1972). Quelques applications de la théorie générale des processus I. Invent. Math. 18, 293–336CrossRefMathSciNetGoogle Scholar
  2. 2.
    Azéma, J. (1978). Représentation d’une surmartingale bornée, ZW, 45, 191–212.Google Scholar
  3. 3.
    Azéma, J., Meyer, P.A., and Yor, M. (1992). Martingales relatives. Sém.Proba. XXVI, Lecture Notes in Mathematics Vol. 1526, Springer, pp.307–321.Google Scholar
  4. 4.
    Azéma, J., and Yor, M. (1992). Sur les zéros des martingales continues, Sém.Proba. XXVI, Lecture Notes in Mathematics Vol. 1526, Springer, pp.248–306.Google Scholar
  5. 5.
    Barlow, M.T., Emery, M., Knight, F.B., Song, S., and Yor, M. (1998). Autour d’un théorème de Tsirelson sur des filtrations browniennes et non browniennes, Sém.Proba. XXXII, Lecture Notes in Mathematics Vol. 1686, Springer, pp.264–305.Google Scholar
  6. 6.
    Dellacherie, C., Maisonneuve, B., and Meyer, P.A. (1992). Probabilités et Potentiel, Chapitres XVII-XXIV: Processus de Markov (fin), Compléments de Calcul Stochastique, Hermann Paris.Google Scholar
  7. 7.
    Itô K., Watanabe S. (1965). Transformation of Markov processes by multiplicative functionals. Ann. Inst. Fourier. Grenoble. 15(1): 13–30MathSciNetGoogle Scholar
  8. 8.
    Jacod, J. (1979).Calcul stochastique et problèmes de martingales, Lecture Notes in Mathematics Vol. 714, Springer pp. 240–249.Google Scholar
  9. 9.
    Meyer, P.A. (1979). Représentations multiplicatives de sousmartingales d’après Azéma, Sém.Proba. XIII, Lecture Notes in Mathematics, Vol. 721, Springer.Google Scholar
  10. 10.
    Meyer, P.A. and Yoeurp, C. (1979). Sur la décomposition multiplicative des sousmartingaless positives, Sém.Proba. XIII, Lecture Notes in Mathematics, Vol. 721, Springer, pp.240–249.Google Scholar
  11. 11.
    Nikeghbali A., Yor M. (2006). Doob’s maximal identity, multiplicative decompositions and enlargements of filtrations. Illinois J Math. 50(4): 791–814MathSciNetGoogle Scholar
  12. 12.
    Nikeghbali A. (2006). A class of remarkable martingales, Stochastic Process. Appl. 116(6): 917–938MathSciNetGoogle Scholar
  13. 13.
    Nikeghbali A. (2006). Enlargements of filtrations and path decompositions at non stopping times. Probab. Theory and Relat. Fields 136, 532–540Google Scholar
  14. 14.
    Revuz D., Yor M. (1999). Continuous martingales and Brownian Motion, 3rd ed. Springer, BerlinzbMATHGoogle Scholar
  15. 15.
    Yor M. (1979). Les inégalités de sous-martingales comme conséquence de la relation de domination. Stochastics 3,1–15MathSciNetGoogle Scholar
  16. 16.
    Yor M. (1997). Some Aspects of Brownian Motion, Part II. Some Recent Martingale Problems. Birkhauser, BaselzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Departement MathematikETH ZurichZurichSwitzerland

Personalised recommendations