Journal of Theoretical Probability

, Volume 19, Issue 2, pp 337–364

A Set-indexed Fractional Brownian Motion

Article

We define and prove the existence of a fractional Brownian motion indexed by a collection of closed subsets of a measure space. This process is a generalization of the set-indexed Brownian motion, when the condition of independance is relaxed. Relations with the Lévy fractional Brownian motion and with the fractional Brownian sheet are studied. We prove stationarity of the increments and a property of self-similarity with respect to the action of solid motions. Moreover, we show that there no “really nice” set indexed fractional Brownian motion other than set-indexed Brownian motion. Finally, behavior of the set-indexed fractional Brownian motion along increasing paths is analysed.

Keywords

Fractional Brownian motion Gaussian processes stationarity self-similarity set-indexed processes 

AMS Classification

62G05 60G15 60G17 60G18 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adler, R. J. (1990). An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes, IMS Lect. Notes, Monograph Series, vol 12, Hayward, California.Google Scholar
  2. 2.
    Adler R.J. (2004). Gaussian random fields on manifolds, Stoch. Analysis, Random Fields and Appl., 4, 3–20Google Scholar
  3. 3.
    Alos E. Mazet O., Nualart D. (2001). Stochastic calculus with respect to Gaussian processes. Annals of Prob. 29, 766–801CrossRefGoogle Scholar
  4. 4.
    Benassi A., Jaffard S., Roux D. (1998). Elliptic Gaussian random processes. Rev. Mat. Ibe. 13, 19–89MathSciNetGoogle Scholar
  5. 5.
    Dudley R.M. (1973). Sample functions of the Gaussian process. Annals of Prob. 1(1): 66–103MathSciNetGoogle Scholar
  6. 6.
    Goldie C.M., Greenwood P.E. (1986). Characterizations of set-indexed Brownian motion and associated conditions forfinite-dimensional convergence. Annals of Prob. 14, 802–816MathSciNetGoogle Scholar
  7. 7.
    Herbin, E. (2006). From N-parameter fractional Brownian motions to N-parameter multifractional Brownian motions, to appear in Rocky Mountains. J. Math.Google Scholar
  8. 8.
    Herbin, E., and Lévy-Véhel, J. (2004). Fine analysis of the regularity of Gaussian processes: Stochastic 2-microlocal analysis, preprint.Google Scholar
  9. 9.
    Hida, T., Kuo, H. H., Potthoff, J., and Streit, L. (1993). White Noise: An Infinite Dimensional Calculus, Kluwer Academic Press.Google Scholar
  10. 10.
    Hu, Y., and Øksendal, B. (2003). Fractional white noise calculus and application to finance. Infinite Dimensional Analysis, Quantum Prob. and Related Topics. 6, 1–32.Google Scholar
  11. 11.
    Ivanoff, G. (2003). Set-indexed processes: distributions and weak convergence, in: Topics in Spatial Stochastic Processes, Lecture Notes in Mathematics, 1802, Springer, 85–126.Google Scholar
  12. 12.
    Ivanoff, G., and Merzbach, E. (2000). Set-Indexed Martingales, Chapman & Hall/CRC.Google Scholar
  13. 13.
    Ivanoff G., Merzbach E. (2002). Random censoring in set-indexed survival analysis. Ann. Appl. Prob., 12(3): 944–971CrossRefMathSciNetGoogle Scholar
  14. 14.
    Kamont A. (1996). On the fractional anisotropic Wiener field. Prob. and Math. Stat. 16(1): 85–98MathSciNetGoogle Scholar
  15. 15.
    Kuo, H. H. (1996). White Noise Distribution Theory, CRC Press.Google Scholar
  16. 16.
    Khoshnevisan, D. (2002). Multiparameter Processes: an introduction to random fields, Springer.Google Scholar
  17. 17.
    Lévy-Véhel, J., and Riedi, R. (1997). Fractional Brownian motion and data traffic modeling: The other end of the spectrum. In Fractals in Engineering, Springer, 185–202.Google Scholar
  18. 18.
    Peltier, R., and Lévy-Véhel, J. (1995). Multifractional Brownian motion: definition and preliminary results, Rapport de recherche INRIA 2645.Google Scholar
  19. 19.
    Pesquet-Popescu, B. (1998). Modélisation bidimensionnelle de processus non stationnaires et application à l’étude du fond sous-marin, thèse de l’ENS Cachan.Google Scholar
  20. 20.
    Pyke R. (1983). A uniform central limit theorem for partial sum processes indexed by sets. London Math. Soc. Lect. Notes 79, 219–240MathSciNetGoogle Scholar
  21. 21.
    Sottinen, T. (2003). Fractional Brownian motion finance and queueing, PhD thesis of University of Helsinki.Google Scholar
  22. 22.
    Talagrand M. (1995). Hausdorff measure of trajectories of multiparameter fractional Brownian motion. Annals of Prob., 23(2): 767–775MathSciNetGoogle Scholar
  23. 23.
    Samorodnitsky, G., and Taqqu, M. S. (1994). Stable non-Gaussian random processes, Chapman & Hall/CRC.Google Scholar
  24. 24.
    Xiao Y. (1997). Hausdorff measure of the graph of fractional Brownian motion. Math. Proc. Camb. Phil. Soc. 122, 565–576CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Dassault AviationSaint-Cloud CedexFrance
  2. 2.Dept. of MathematicsBar Ilan UniversityRamat-GanIsrael

Personalised recommendations