Journal of Theoretical Probability

, Volume 18, Issue 2, pp 345–358 | Cite as

Asymptotic Normality for Non-linear Functionals of Non-causal Linear Processes with Summable Weights

  • Tsung-Lin Cheng
  • Hwai-Chung Ho


Let \(X_{n} = \sum\limits{_{j = - \infty }^\infty} {a_{j}ε _{n - j,} n\geq 1,}\) be a non-causal linear process with weights a j ’s satisfying certain summability conditions, and the iid sequence of innovation {ε i } having zero mean and finite second moment. For a large class of non-linear functional K which includes indicator functions and polynomials, the present paper develops the \( \sqrt N\) central limit theorem for the partial sums \( S_N = \sum\limits{_{n = 1}^N} {\left[ {K(X_n ) - EK(X_n )} \right].}\)


Central limit theorem non-causal stationary process non- linear functional 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Davydov, Y.A. 1970The invariance principle for stationary processesTheory Probab. App15487498Google Scholar
  2. 2.
    Dehling, H., Taqqu, M.S. 1989The empirical process of some long-range dependent sequences with an application to U-statisticsAnn. Statist1717671783Google Scholar
  3. 3.
    Dobrushin, R.L., Major, P. 1979Non-central limit theorems for non-linear functions of Gaussian fieldsZ. Wahrsch. Verw. Gebiete502752Google Scholar
  4. 4.
    Doukhan P., Surgailis D. (1998). Functional central limit theorem for the empirical process of short memory linear processes. C.R. Acad. Sci. Paris, t. 326, Série I, 87–92.Google Scholar
  5. 5.
    Doukhan, P., Lang, G., Surgailis, D. 2002Asymptotics of weighted empirical processes of linear fields with long-range dependenceAnn. I.H. Poincaré-PR38879896Google Scholar
  6. 6.
    Giraitis, L. 1985Central limit theorem for functionals of a linear processLithuanian math. J252535Google Scholar
  7. 7.
    Giraitis, L., Surgailis, D. 1986Multivariate Appell polynomials and the central limit theoremEberlin, E.Taqqu, M.S. eds. Dependence in Probability and StatisticsBirkhäuserBoston2171Google Scholar
  8. 8.
    Giraitis, L., Surgailis, D. 1999Central limit theorem for the empirical process of a linear sequence with long memoryJ. Statist. Plan. Infer808193Google Scholar
  9. 9.
    Ho, H.-C., Hsing, T. 1996On the asymptotic expansion of the empirical process of long-memory moving averagesAnn. Statist249921024Google Scholar
  10. 10.
    Ho, H.-C., Hsing, T. 1997Limit theorems for functional of moving averagesAnn. Probab2516361669Google Scholar
  11. 11.
    Ho, H.-C., Sun, T.-C. 1987A central limit Theorem for non-instantaneous filters of a stationary Gaussian processJ. Multivariate Anal22144155Google Scholar
  12. 12.
    Rosenblatt, M. (1961). Independence and dependence. Proceeding Fourth Berkeley Symposi Math. Statis. Probab. pp. 431–443. University California Press, CA.Google Scholar
  13. 13.
    Surgailis, D. 1982Domains of attraction of self-similar multiple integralsLithuanian Math. J22195201Google Scholar
  14. 14.
    Taqqu, M.S. 1975Weak convergence to the fractional Brownian motion and to the Rosenblatt processZ.Wahrsch. Verw. Gebiete31287302Google Scholar
  15. 15.
    Taqqu, M.S. 1979Convergence of integrated processes of arbitrary Hermite rankZ. Wahrsch. Verw. Gebiete :505383Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of MathematicsNational Changhua University of EducationTaiwanROC
  2. 2.Institute of Statistical ScienceAcademia SinicaTaiwan

Personalised recommendations