Advertisement

Journal of Mathematical Sciences

, Volume 244, Issue 6, pp 981–997 | Cite as

Some Remarks on the Partial Regularity of a Suitable Weak Solution to the Navier–Stokes Cauchy Problem

  • F. CrispoEmail author
  • P. Maremonti
Article
  • 8 Downloads

The goal of the paper is to explore some of the issues related to local regularity of a suitable weak solution to the Navier–Stokes Cauchy problem. The obtained results are in the spirit of the well-known results by Caffarelli–Kohn–Nirenberg.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Caffarelli, R. Kohn, and L. Nirenberg, “Partial regularity of suitable weak solutions of the Navier–Stokes equations,” Comm. Pure Appl. Math., 35, 771–831 (1982).MathSciNetCrossRefGoogle Scholar
  2. 2.
    F. Crispo and P. Maremonti, “On the spatial asymptotic decay of a suitable weak solution to the Navier–Stokes Cauchy problem,” Nonlinearity, 29, 1355–1383 (2016);  https://doi.org/10.1088/0951-7715/29/4/1355.MathSciNetCrossRefGoogle Scholar
  3. 3.
    F. Crispo and P. Maremonti, “A remark on the partial regularity of a suitable weak solution to the Navier–Stokes Cauchy problem,” Discrete Contin. Dyn. Syst., 37, 1283–1294 (2017).MathSciNetCrossRefGoogle Scholar
  4. 4.
    J. Leray, “Sur le mouvement d’un liquide visqueux emplissant l’espace,” Acta Math., 63, 193–248 (1934).MathSciNetCrossRefGoogle Scholar
  5. 5.
    P. Maremonti, “Regular solutions to the Navier–Stokes equations with an initial data in L(n,∞),” Ric. Mat., 66, 65–97 (2017).MathSciNetCrossRefGoogle Scholar
  6. 6.
    P. Maremonti, “A Note on Prodi-Serrin Conditions for the Regularity of a Weak Solution to the Navier–Stokes Equations,” J. Math. Fluid Mech., 20, 379–392 (2018).MathSciNetCrossRefGoogle Scholar
  7. 7.
    V. Scheffer, “Hausdorff measure and the Navier–Stokes equations,” Comm. Math. Phys., 55, 97–112 (1977).MathSciNetCrossRefGoogle Scholar
  8. 8.
    V. Scheffer, “A solution to the Navier–Stokes inequality with an internal singularity,” Comm. Math. Phys., 101, 47–85 (1985).MathSciNetCrossRefGoogle Scholar
  9. 9.
    E. A. Stein, “Note on singular integrals,” Proc. Amer. Math. Soc., 8, 250–254 (1957).MathSciNetCrossRefGoogle Scholar
  10. 10.
    J. Serrin, “The initial value problem for the Navier–Stokes equations,” in: Nonlinear Problems, Univ. Wisconsin Press (1963), pp. 69–98.Google Scholar
  11. 11.
    A. Vasseur, “A new proof of partial regularity of solutions to Navier–Stokes equations,” Nonlin. Diff. Eq. Appl., 14, 753–785 (2007).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Dipartimento di Matematica e FisicaUniversità degli Studi della Campania “Luigi Vanvitelli”CasertaItaly

Personalised recommendations