Advertisement

85 Anniversary of Professor Vsevolod Alekseevich Solonnikov

Article
  • 1 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. Solonnikov, “On general boundary value problems for A. Douglis–L. Nirenberg elliptic systems, I,” Izv. Acad. Nauk SSSR Ser. Mat., 28, No. 3, 665–706 (1964).Google Scholar
  2. 2.
    V. A. Solonnikov, “On general boundary value problems for A. Douglis–L. Nirenberg elliptic systems, II,” Trudy Mat. Inst. Steklov, 92, 233–297 (1966).MathSciNetGoogle Scholar
  3. 3.
    S. Agmon, A. Douglis, and L. Nirenberg, “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, II,” Comm. Pure App. Math., 17, 35–92 (1964).MathSciNetCrossRefGoogle Scholar
  4. 4.
    V. A. Solonnikov, “On boundary value problems for linear parabolic systems of differential equations of general form,” Trudy Mat. Inst. Steklov, 83, 3–162 (1965).MathSciNetGoogle Scholar
  5. 5.
    O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, 23 (1968).Google Scholar
  6. 6.
    O. A. Ladyzhenskaya and V. A. Solonnikov, “On some problems of vector analysis and on generalized formulations of boundary-value problems for the Navier–Stokes equations,” Zap. Nauchn. Semin. LOMI, 59, 81–116 (1976).MathSciNetzbMATHGoogle Scholar
  7. 7.
    O. A. Ladyzhenskaya and V. A. Solonnikov, “Determination of the solutions of boundaryvalue problem for stationary Stokes and Navier–Stokes equations having an unbounded Dirichlet integral,” Zap. Nauchn. Semin. LOMI, 96, 117–160 (1980).zbMATHGoogle Scholar
  8. 8.
    V. A. Solonnikov, “Solvability of boundary and initial boundary-value problems for the Navier–Stokes equations in domains with non-compact boundaries,” Zap. Nauchn. Semin. LOMI, 96, 288–293 (1980).zbMATHGoogle Scholar
  9. 9.
    M. Padula and V. A. Solonnikov, “A simple proof of the linear instability of rotating liquid drops,” Ann. Univ. Ferrara Sez. VII Sci. Mat.54, No. 1, 107–122 (2008).MathSciNetCrossRefGoogle Scholar
  10. 10.
    O. A. Ladyzhenskaya and V. A. Solonnikov, “Solvability of evolution problems of magnetohydrodynamics,” Dokl. Acad. Nauk SSSR, 124, No. 1, 26–28 (1959).zbMATHGoogle Scholar
  11. 11.
    V. A. Solonnikov, “On some stationary problems for equations of magnetohydrodynamics of a viscous incompressible liquid,” in: Proc. V All-union conference on functional analysis, Baku (1961), pp. 241–246.Google Scholar
  12. 12.
    O. A. Ladyzhenskaya and V. A. Solonnikov, “The linearization principle and invariant manifolds for problems of magnetohydrodynamics,” Zap. Nauchn. Semin. LOMI, 38, 46–93 (1973).MathSciNetGoogle Scholar
  13. 13.
    M. Padula and V. A. Solonnikov, “On the free boundary problem of magnetohydrodynamics,” Zap. Nauchn. Semin. POMI, 385, 135–186 (2010).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Personalised recommendations