Journal of Mathematical Sciences

, Volume 244, Issue 5, pp 771–778 | Cite as

Rare Events and Poisson Point Processes

  • F. GötzeEmail author
  • A. Yu. Zaitsev

The aim of the present work is to show that the results obtained earlier on the approximation of distributions of sums of independent terms by the accompanying compound Poisson laws may be interpreted as rather sharp quantitative estimates for the closeness between the sample containing independent observations of rare events and the Poisson point process which is obtained after a Poissonization of the initial sample.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. V. Arak, “On the convergence rate in Kolmogorov’s uniform limit theorem. I,” Theory Probab. Appl., 26, 225–245 (1981).MathSciNetzbMATHGoogle Scholar
  2. 2.
    T. V. Arak and A. Yu. Zaitsev, “Uniform limit theorems for sums of independent random variables,” Proc. Steklov Inst. Math., 174 (1988).Google Scholar
  3. 3.
    A. D. Barbour and O. Chryssaphinou, “Compound Poisson approximation: a user’s guide,” Ann. Appl. Probab., 33, 727–750 (2001).MathSciNetCrossRefGoogle Scholar
  4. 4.
    A. D. Barbour and P. Hall, “On the rate of Poisson convergence,” Math. Proc. Camb. Phil. Soc., 95, 473–480 (1984).MathSciNetCrossRefGoogle Scholar
  5. 5.
    I. Berkes and W. Philipp, “Approximation theorems for independent and weakly dependent random vectors,” Ann. Probab., 7, 29–54 (1979).MathSciNetCrossRefGoogle Scholar
  6. 6.
    V. Čekanavičius, Approximations Methods in Probability Theory, Universitext: Springer. (2016).CrossRefGoogle Scholar
  7. 7.
    R. M. Dudley, “Distances of probability measures and random variables,” Ann. Math. Statist., 39, 1563–1572 (1968).MathSciNetCrossRefGoogle Scholar
  8. 8.
    F. Götze and A. Yu. Zaitsev, “Approximation of convolutions by accompanying laws without centering,” Zap. Nauchn. Semin. POMI, 320, 44–53 (2004).zbMATHGoogle Scholar
  9. 9.
    I. A. Ibragimov and E. L. Presman, “On the rate of approach of the distributions of sums of independent random variables to accompanying distributions,” Theory Probab. Appl., 18, 753–766 (1973).CrossRefGoogle Scholar
  10. 10.
    C. Hipp, “Approximation of aggregate claims distributions by compound Poisson distributions,” Insurance Math. Econom., 4, 227–232 (1985).MathSciNetCrossRefGoogle Scholar
  11. 11.
    M. Katz, “Note on the Berry–Esseen theorem,” Ann. Math. Statist., 34, 1107–1108 (1963).MathSciNetCrossRefGoogle Scholar
  12. 12.
    A. N. Kolmogorov, “Approximation of distributions of sums of independent terms by infinitely divisible distributions,” Trudy Moskov. Mat. Obšč., 12, 437–451 (1963).MathSciNetzbMATHGoogle Scholar
  13. 13.
    L. Le Cam, “An approximation theorem for Poisson binomial distribution,” Pacific J. Math., 10, 1181–1197 (1960).MathSciNetCrossRefGoogle Scholar
  14. 14.
    L. Le Cam, “On the distribution of sums of independent random variables,” in: Bernoulli, Bayes, Laplace (anniversary volume), Springer, Berlin (1965), pp. 179–202.Google Scholar
  15. 15.
    L. Le Cam, “Asymptotic methods in statistical decision theory,” Springer, Berlin (1986).CrossRefGoogle Scholar
  16. 16.
    V. V. Petrov, “A bound for the deviation of the distribution of a sum of independent random variables from the normal law,” Dokl. Akad. Nauk SSSR, 160, 1013–1015 (1965).MathSciNetGoogle Scholar
  17. 17.
    Yu. V. Prokhorov, “The asymptotic behavior of binomial distribution,” Usp. Mat. Nauk, 8, 135–142 (1953).MathSciNetzbMATHGoogle Scholar
  18. 18.
    B. Roos, “On Hipp’s compound Poisson approximations via concentration functions,” Bernoulli, 11, 135–142 (2005).MathSciNetCrossRefGoogle Scholar
  19. 19.
    A. Yu. Zaitsev, “On the accuracy of approximation of distributions of sums of independent random variables—which are nonzero with a small probability—by means of accompanying laws,” Theory Probab. Appl., 28, 625–636 (1983).zbMATHGoogle Scholar
  20. 20.
    A. Yu. Zaitsev, “On the uniform approximation of distributions of sums of independent random variables,” Theory Probab. Appl., 32, 45–52 (1987).MathSciNetGoogle Scholar
  21. 21.
    A. Yu. Zaitsev, “Multivariate version of the second Kolmogorov’s uniform limit theorem,” Theory Probab. Appl., 34, 128–151 (1989).MathSciNetGoogle Scholar
  22. 22.
    A. Yu. Zaitsev, “Approximation of convolutions of probability distributions by infinitely divisible laws under weakened moment restrictions,” Zap. Nauchn. Semin. POMI, 194, 79–90 (1992).Google Scholar
  23. 23.
    A. Yu. Zaitsev, “On approximation of the sample by a Poisson point process,” Zap. Nauchn. Semin. POMI, 298, 111–125 (2003).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Universität Bielefeld, Germany and St. Petersburg Department of Steklov Mathematical InstituteSt.Petersburg State UniversitySt.PetersburgRussia

Personalised recommendations