On Characterization of Distributions of Symmetrically Dependent Random Variables

  • 2 Accesses

Characterizations of scale mixtures of normal, stable, and some other laws are obtained in the case of symmetrically dependent random variables. Symmetrically dependent random variables are studied for a special case of scale dependence. Conditions of unique (and nonunique) representation of a sequence of random variables as that of symmetrically dependent ones are given. Some variants of the Linnik and Polya theorems are given.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.


  1. 1.

    N. I. Akhiezer, The Classical Moment Problem and Some Related Topics in Analysis [in Russian], Moscow (1961).

  2. 2.

    V. M. Zolotarev, One-Dimensional Stable Distributions [in Russian], Moscow (1983).

  3. 3.

    A. M. Kagan, Yu. V. Linnik, and S. R. Rao, Characterization Problems in Mathematical Statistics [in Russian], Moscow (1972).

  4. 4.

    A. V. Kakosyan, L. B. Klebanov, and I. A. Melamed, Characterization of Distributions by the Method of Intensively Monotone Operators, Springer–Verlag, Berlin, Heidelberg, New York, Tokyo (1984).

  5. 5.

    M. G. Krein, “Sur le probléme du prolongement des fonctious hermitiennes positives et continues,” Dokl. Akad. Nauk SSSR, 26, 17–22 (1940).

  6. 6.

    M. G. Krein, “ On the logarithm of an infinitely decomposable Hermite-positive function,” Dokl. Akad. Nauk SSSR, 45, 91–94 (1944).

  7. 7.

    M. G. Krein, “On the problem of the continuation of helical arcs in Hilbert space,” Dokl. Akad. Nauk SSSR, 45, 139–142 (1944).

  8. 8.

    Yu. V. Linnik, Decompositions of Probability Laws [in Russian], Leningrad (1960).

  9. 9.

    G. Polya, “Herleitung des Gauss’schen Fehlergesetzes aus einer Funktionalgleichung,” Math. Zeitschrift, 18, 96–108.

  10. 10.

    L. Takac, Combinatorial Methods in the Theory of Stochastic Processes [Russian translation], Moscow (1971).

Download references

Author information

Correspondence to I. V. Volchenkova or L. B. Klebanov.

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 466, 2017, pp. 81–95.

Translated by S. Yu. Pilyugin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Volchenkova, I.V., Klebanov, L.B. On Characterization of Distributions of Symmetrically Dependent Random Variables. J Math Sci 244, 752–761 (2020).

Download citation