Advertisement

Numerical Characteristics of Varieties of Poisson Algebras

  • S. M. RatseevEmail author
Article
  • 1 Downloads

Abstract

This paper is a survey of recent results of investigations on varieties of Poisson algebras. We give constructions of varieties of Poisson algebras with extremal properties, we give equivalent conditions for the polynomial codimension growth of a variety of Poisson algebras, we study varieties of Poisson algebras whose ideals of identities contain the identity {x, y} ⋅ {z, t} = 0, and we study the interrelation between such varieties and varieties of Lie algebras.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. A. Bahturin, Identical Relations in Lie Algebras, VNU Sci. Press, Utrecht (1987).Google Scholar
  2. 2.
    O. I. Cherevatenko, “On Lie nilpotent Poisson algebras,” Nauch. Ved. BelGU. Mat., Fiz., 142, No. 23, 14–16 (2012).Google Scholar
  3. 3.
    V. Drensky, “Representations of the symmetric group and varieties of linear algebras,” Math. USSR. Sb., 43, 85–100 (1981).CrossRefGoogle Scholar
  4. 4.
    V. Drensky, “Relations for the cocharacter sequences of T-ideals,” in: Proc. of the Int. Conf. on Algebra Honoring A. Malcev, Contemp. Math., Vol. 131, Pt. 2, Amer. Math. Soc., Providence (1992), pp. 285–300.Google Scholar
  5. 5.
    V. Drensky, Free Algebras and PI-Algebras. Graduate Course in Algebra, Springer, Singapore (2000).Google Scholar
  6. 6.
    V. Drensky and A. Regev, “Exact asymptotic behaviour of the codimensions of some P.I. algebras,” Israel J. Math., 96, 231–242 (1996).MathSciNetCrossRefGoogle Scholar
  7. 7.
    D. R. Farkas, “Poisson polynomial identities,” Commun. Algebra, 26, No. 2, 401–416 (1998).MathSciNetCrossRefGoogle Scholar
  8. 8.
    D. R. Farkas, “Poisson polynomial identities. II,” Arch. Math. (Basel), 72, No. 4, 252–260 (1999).MathSciNetCrossRefGoogle Scholar
  9. 9.
    A. Giambruno, D. La Mattina, and V. M. Petrogradsky, “Matrix algebras of polynomial codimension growth,” Israel J. Math., 158, 367–378 (2007).MathSciNetCrossRefGoogle Scholar
  10. 10.
    A. Giambruno and M. V. Zaicev, “Exponential codimension growth of P.I. algebras: an exact estimate,” Adv. Math., 142, 221–243 (1999).MathSciNetCrossRefGoogle Scholar
  11. 11.
    A. Giambruno and M. V. Zaicev, Polynomial Identities and Asymptotic Methods, Math. Surv. Monographs, Vol. 122, Amer. Math. Soc., Providence (2005).Google Scholar
  12. 12.
    A. R. Kemer, “T-ideals with power growth of the codimensions are Specht,” Sib. Math. J., 19, No. 1, 37–48 (1978).CrossRefGoogle Scholar
  13. 13.
    D. La Mattina, “Varieties of almost polynomial growth: classifying their subvarieties,” Manuscripta Math., 123, No. 2, 185–203 (2007).MathSciNetCrossRefGoogle Scholar
  14. 14.
    S. P. Mishchenko, “Varieties of Lie algebras with two-step nilpotent commutant,” Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 6, 39–43 (1987).Google Scholar
  15. 15.
    S. P. Mishchenko, “On varieties of solvable Lie algebras,” Sov. Math. Dokl., 42, No. 1, 202–205 (1991).MathSciNetzbMATHGoogle Scholar
  16. 16.
    S. P. Mishchenko, V. M. Petrogradsky, and A. Regev, “Poisson PI algebras,” Trans. Am. Math. Soc., 359, No. 10, 4669–4694 (2007).MathSciNetCrossRefGoogle Scholar
  17. 17.
    S. P. Mishchenko and M. V. Zaicev, “An example of a variety of Lie algebras with a fractional exponent,” J. Math. Sci., 93, No. 6, 977–982 (1999).MathSciNetCrossRefGoogle Scholar
  18. 18.
    V. M. Petrogradsky, “Growth of polynilpotent varieties of Lie algebras and rapidly growing entire functions,” Russ. Acad. Sci. Sb. Math. 188, No. 6, 913–931 (1997).zbMATHGoogle Scholar
  19. 19.
    V. M. Petrogradsky, “On numerical characteristics of subvarieties of three varieties of Lie algebras,” Sb. Math., 190, No. 6, 913–931 (1999).MathSciNetGoogle Scholar
  20. 20.
    V. M. Petrogradsky, “Exponents of subvarieties of upper triangular matrices over arbitrary fields are integral,” Serdica Math. J., 26, No. 2, 167–176 (2000).MathSciNetzbMATHGoogle Scholar
  21. 21.
    S. M. Ratseev, “A growth and a colength of spaces of a special type of varieties of Poisson algebras,” Izv. Vyssh. Uchebn. Zaved. Povolzh. Reg., 26, No. 5, 125–135 (2006).Google Scholar
  22. 22.
    S. M. Ratseev, “Growth of some varieties of Leibniz algebras,” Vestn. Samar. Gos. Univ. Estestv.-Nauch. Ser., 46, No. 6/1, 70–77 (2006).MathSciNetzbMATHGoogle Scholar
  23. 23.
    S. M. Ratseev, “Asymptotic behavior of the codimension growth of Leibniz algebras with a nilpotent commutator subalgebra,” Vestn. Samar. Gos. Univ. Estestv.-Nauch. Ser., 78, No. 4, 65–72 (2010).Google Scholar
  24. 24.
    S. M. Ratseev, “Growth in Poisson algebras,” Algebra Logic, 50, No. 1, 46–61 (2011).MathSciNetzbMATHGoogle Scholar
  25. 25.
    S. M. Ratseev, “Identities in the varieties generated by the algebras of upper triangular matrices,” Sib. Math. J., 52, No. 2, 329–339 (2011).MathSciNetCrossRefGoogle Scholar
  26. 26.
    S. M. Ratseev, “Equivalent conditions of polynomial growth of a variety of Poisson algebras,” Moscow Univ. Math. Bull., 67, No. 5-6, 195–199 (2012).MathSciNetCrossRefGoogle Scholar
  27. 27.
    S. M. Ratseev, “On varieties of Poisson algebras with extremal properties,” Nauch. Vedom. BelGU. Mat., Fiz., No. 5, 107–110 (2013).Google Scholar
  28. 28.
    S. M. Ratseev, “Poisson algebras of polynomial growth,” Sib. Math. J., 54, No. 3, 555–565 (2013).MathSciNetCrossRefGoogle Scholar
  29. 29.
    S. M. Ratseev, “The interrelation of Poisson algebras and Lie algebras in the language of identities,” Mat. Zametki, 96, No. 4, 567–577 (2014).CrossRefGoogle Scholar
  30. 30.
    S. M. Ratseev, “Lie algebras with extremal properties,” Sib. Math. J., 56, No. 2, 358–366 (2015).MathSciNetCrossRefGoogle Scholar
  31. 31.
    S. M. Ratseev, “On minimal Poisson algebras,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 11, 64–72 (2015).Google Scholar
  32. 32.
    S. M. Ratseev, “On proper T-ideals of Poisson algebras with extreme properties,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 6, 8–16 (2016).Google Scholar
  33. 33.
    S. M. Ratseev and O. I. Cherevatenko, “Exponents of some varieties of Leibniz-Poisson algebras,” Vestn. Samar. Gos. Univ. Estestv.-Nauch. Ser., 104, No. 3, 42–52 (2013).zbMATHGoogle Scholar
  34. 34.
    Yu. P. Razmyslov, Identities of Algebras and Their Representations, Transl. Math. Monogr., Vol. 138, Amer. Math. Soc., Providence (1994).Google Scholar
  35. 35.
    A. Regev, “Existence of polynomial identities in AB,” Bull. Am. Math. Soc., 77, No. 6, 1067–1069 (1971).Google Scholar
  36. 36.
    I. P. Shestakov, “Quantization of Poisson superalgebras and speciality of Jordan Poisson superalgebras,” Algebra Logic, 32, No. 5, 309–317 (1993).MathSciNetCrossRefGoogle Scholar
  37. 37.
    A. B. Verevkin, M. V. Zaicev, and S. P. Mishchenko, “A sufficient condition for existence of lower and upper exponents of the variety of linear algebras,” Moscow Univ. Math. Bull., No. 2, 86–89 (2011).Google Scholar
  38. 38.
    I. B. Volichenko, “A variety of Lie algebras connected with standard identities,” Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 1, 23–30 (1980).Google Scholar
  39. 39.
    I. B. Volichenko, “A variety of Lie algebras connected with standard identities,” Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 2, 22–27 (1980).Google Scholar
  40. 40.
    I. B. Volichenko, “Varieties of Lie algebras with identity [[X 1 , X 2 , X 3], [X 4 , X 5 , X 6]] = 0 over a field of characteristic zero,” Sib. Math. J., 25, 370–382 (1984).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Ulyanovsk State UniversityUlyanovskRussia

Personalised recommendations