Advertisement

Journal of Mathematical Sciences

, Volume 237, Issue 1, pp 110–125 | Cite as

Equilibria of Three Point Charges with Quadratic Constraints

  • G. Giorgadze
  • G. Khimshiashvili
Article
  • 3 Downloads

Abstract

We discuss equilibrium configurations of the Coulomb potential of positive point charges with positions satisfying certain quadratic constraints in the plane and three-dimensional Euclidean space. The main attention is given to the case of three point charges satisfying a positive definite quadratic constraint in the form of equality or inequality. For a triple of points on the boundary of convex domain, we give a geometric criterion of the existence of positive point charges for which the given triple is an equilibrium configuration. Using this criterion, rather comprehensive results are obtained for three positive charges in the disc, ellipse, and three-dimensional ball. In the case of the circle, we strengthen these results by showing that any configuration consisting of an odd number of points on the circle can be realized as an equilibrium configuration of certain nonzero point charges and give a simple criterion for existence of positive charges with this property. Similar results are obtained for three point charges each of which belongs to one of the three concentric circles. Several related problems and possible generalizations are also discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. M. Aguirregabiria, A. Hernandez, and M. Rivas, “On the equilibrium configuration of point charges placed on an ellipse,” Comput. Phys. 4, 960–963 (1990).CrossRefGoogle Scholar
  2. 2.
    V. Arnol’d, A. Varchenko, and S. Gusein-Zade, Singularities of Differentiable Mappings [in Russian], Moscow (2005).Google Scholar
  3. 3.
    H. Aspden, “Earnshaw’s theorem,” Am. J. Phys., 55, No. 3, 199–200 (1987).CrossRefGoogle Scholar
  4. 4.
    A. Berezin, “The distribution of charges in classical electrostatics,” Nature, 317, 208–210 (1985).CrossRefGoogle Scholar
  5. 5.
    P. Exner, “An isoperimetric problem for point interactions,” J. Phys. A: Math. Gen. A38, 4795–4802 (2005).MathSciNetCrossRefGoogle Scholar
  6. 6.
    A Gabrielov, D. Novikov, and B. Shapiro, “Mystery of point charges,” Proc. London Math. Soc., 95, No. 2, 443-472 (2007).MathSciNetCrossRefGoogle Scholar
  7. 7.
    G. Giorgadze and G. Khimshiashvili, “On nondegeneracy of certain constrained extrema,” Dokl. Math., 92, No. 3, 691-694 (2015).MathSciNetCrossRefGoogle Scholar
  8. 8.
    G. Giorgadze and G. Khimshiashvili, “Equilibria of point charges in convex domains,” Bull. Georgian Natl. Acad. Sci., 9, No. 2, 19–26 (2015).MathSciNetzbMATHGoogle Scholar
  9. 9.
    C. Hassell and E. Rees, “The index of a constrained critical point,” Am. Math. Mon., 100, No. 8, 772–778 (1993).MathSciNetCrossRefGoogle Scholar
  10. 10.
    G. Khimshiashvili, “Extremal problems on configuration spaces,” Proc. A. Razmadze Math. Inst., 155, 147–151 (2011).MathSciNetzbMATHGoogle Scholar
  11. 11.
    G. Khimshiashvili, “Equilibria of constrained point charges,” Bull. Georgian Natl. Acad. Sci., 7, No. 2, 15–20 (2013).MathSciNetzbMATHGoogle Scholar
  12. 12.
    G. Khimshiashvili, G. Panina, and D. Siersma, ‘Coulomb control of polygonal linkages,” J. Dynam. Control Syst., 14, No. 4, 491–501 (2014).MathSciNetCrossRefGoogle Scholar
  13. 13.
    G. Khimshiashvili, G. Panina, and D. Siersma, “Equilibria of point charges on convex curves,” J. Geom. Phys., 98, No. 2, 110–117 (2015).MathSciNetCrossRefGoogle Scholar
  14. 14.
    G. Khimshiashvili, G. Panina, and D. Siersma, “Equilibria of three constrained point charges,” J. Geom. Phys., 106, No. 1, 42–50 (2016).MathSciNetCrossRefGoogle Scholar
  15. 15.
    H. Munera, “Properties of discrete electrostatic systems,” Nature, 320, 597–600 (1986).CrossRefGoogle Scholar
  16. 16.
    K. Nurmela, “Minimum-energy point configurations on a circular disk,” J. Phys. A, 31, No. 3, 1035–1047 (1998).CrossRefGoogle Scholar
  17. 17.
    J. Palmore, “Relative equilibria of vortices in two dimensions,” Proc. Natl. Acad. Sci. USA, 79, 716-718 (1982).MathSciNetCrossRefGoogle Scholar
  18. 18.
    W. Paul, “Electromagnetic traps for charged and neutral particles,” Rev. Mod. Phys., 62, 531-540 (1990).CrossRefGoogle Scholar
  19. 19.
    S. Webb, “Minimum-energy configurations for charges on the surface of a sphere,” Chem. Phys. Lett., 129, No. 3, 310–314 (1986).CrossRefGoogle Scholar
  20. 20.
    S. Webb, ‘Minimum-Coulomb-energy electrostatic configurations,” Nature, 323, No. 20, 211–215 (1986).Google Scholar
  21. 21.
    L. Whyte, “Unique arrangements of points on a sphere,” Am. Math. Mon., 59, No. 9, 606–611 (1952).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Iv. Javakhishvili Tbilisi State UniversityTbilisiGeorgia
  2. 2.Ilia State UniversityTbilisiGeorgia

Personalised recommendations