Advertisement

Journal of Mathematical Sciences

, Volume 244, Issue 2, pp 294–319 | Cite as

Rayleigh–Benard Instability: a Study by the Methods of Cahn–Hillard Theory of Nonequilibrium Phase Transitions

  • E. V. RadkevichEmail author
  • E. A. Lukashev
  • O. A. Vasil’yeva
Article
  • 5 Downloads

Abstract

This article is an attempt to study the process of Rayleigh–Benard convective instability by the methods used for mathematical modeling of critical phenomena as nonequilibrium phase transitions in their initial stages of spinodal decomposition. We show that it is possible to extend the formalism adopted in the Cahn–Hillard theory of nonequilibrium phase transitions and perfected on problems of highgradient crystallization to other types of problems, in particular, those pertaining to the Rayleigh–Benard convective instability. For the initial stage of instability, a model is constructed that represents it as a nonequilibrium phase transition due to diffusive stratification. It is shown that the Gibbs free energy of deviation from the homogeneous state (with respect to the instability under consideration) is an analogue of the Ginsburg–Landau potential. Numerical experiments, by means of boundary temperature control, have been conducted with regard to self-excitation of the homogeneous state. Numerical analysis shows that convective flows may appear and proceed from regular forms (the so-called regular structures) to nonregular flows through a chaotization of the process. External factors, such as temperature growth, may lead to chaos via period doubling bifurcations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. A. Lukashev, N. N. Yakovlev, E. V. Radkevich, and V. V. Palin, “On the possibility of the Cahn–Hillard approach extension to the solution of gas dynamics problems (inner turbulence),” in: 40th Intern. Conf. Applications of Mathematics in Engineering and Economics (AMEE-14), 2014, AIP Conf. Proc., 16 31, 197–207 (2014).Google Scholar
  2. 2.
    E. A. Lukashev, E. V. Radkevich, and N. N. Yakovlev, “On the reconstruction of the initial stage of internal turbulence,” Nanostrukt. Mat. Fiz. Model., 11, No. 1, 73–99 (2014).Google Scholar
  3. 3.
    N. N. Yakovlev, E. A. Lukashev, E. V. Radkevich, and V. V. Palin, “On the internal turbulence paradigm,” Vestn. Samarsk. Gos. Univ. Ser. Fiz. Mat., 19, No. 1, 155–185 (2015).zbMATHGoogle Scholar
  4. 4.
    E. A. Lukashev, N. N. Yakovlev, E. V. Radkevich, and O. A. Vasil’yeva, “On the theory of nonequilibrium phase transitions on the laminar-turbulent transition,” Nanostruct. Math. Phys. Model., 14, No. 1, 5–40 (2016).zbMATHGoogle Scholar
  5. 5.
    E. A. Lukashev, N. N. Yakovlev, E. V. Radkevich, and O. A. Vasil’yeva, “On laminar-to-turbulent transition,” Dokl. RAN, 471, No. 3, 1–5 (2016).MathSciNetzbMATHGoogle Scholar
  6. 6.
    E. V. Radkevich, E. A. Lukashev, M. I. Sidorov, and O. A. Vasil’eva, “Methods of nonlinear dynamics of nonequilibrium processes in fracture mechanics,” Euras. J. Math. Comput. Appl., 6, No. 2, 43–80 (2018).Google Scholar
  7. 7.
    E. V. Radkevich, E. A. Lukashev, N. N. Yakovlev, and O. A. Vasil’yeva, “Study of the Rayleigh–Benard instability by methods of the theory of nonequilibrium phase transitions in the Cahn–Hillard form,” Euras. J. Math. Comput. Appl., 5, No. 2, 36–65 (2017).Google Scholar
  8. 8.
    E. V. Radkevich, E. A. Lukashev, N. N. Yakovlev, and O. A. Vasil’yeva, “On the nature of the Rayleigh–Benard convective instability,” Dokl. RAN, 475, No. 6, 1–6 (2017).Google Scholar
  9. 9.
    N. N. Yakovlev, E. A. Lukashev, and E. V. Radkevich, “Problems of reconstruction of the oriented crystallization process,” Dokl. RAN, 421, No. 5, 625–629 (2008).zbMATHGoogle Scholar
  10. 10.
    E. A. Lukashev and E. V. Radkevich, “Solidification and structurization of instability zones,” Appl. Math., 1, 159–178 (2010).Google Scholar
  11. 11.
    E. A. Lukashev, E. V. Radkevich, and N. N. Yakovlev, “Structurization of the instability zone and crystallization,” Tr. Semin. Petrovskogo, 28, 229–265 (2011).MathSciNetzbMATHGoogle Scholar
  12. 12.
    N. N. Yakovlev, E. A. Lukashev, and E. V. Radkevich, “A study of the directed crystallization by the nethod of mathematical reconstruction,” Dokl. RAN, 445, No. 4, 398–401 (2012).zbMATHGoogle Scholar
  13. 13.
    E. A. Lukashev, E. V. Radkevich, and N. N. Yakovlev, “On visualization of the initial stage of binary alloy crystallization,” Nanostrukt. Mat. Fiz. Model., 11, No. 2, 5–36 (2014).Google Scholar
  14. 14.
    E. A. Lukashev, E. V. Radkevich, M. I. Sidorov, and O. A. Vasil’yeva, “Fracture of a structural material as a nonequilibrium phase transition,” Dokl. RAN, 480, No. 2, 1–6 (2018).Google Scholar
  15. 15.
    J. W. Cahn and J. E. Hillard, “Free energy of a nonuniform system. I. Interfacial free energy,” J. Chem. Phys., 28, No. 2, 258–271 (1958).Google Scholar
  16. 16.
    J. W. Cahn and J. E. Hillard, “Free energy of a nonuniform system. II. Thermodynamic,” J. Chem. Phys., 30, No. 5, 1121–1134 (1958).Google Scholar
  17. 17.
    J. W. Cahn and J. E. Hillard, “Free energy of a nonuniform system. III. Nucleation in a two-component incommpressible fluid,” J. Chem. Phys., 31, No. 3, 688–699 (1959).Google Scholar
  18. 18.
    J. W. Cahn, “Spinodal decomposition,” Acta Met., 9, No. 8, 795–811 (1961).Google Scholar
  19. 19.
    J. W. Cahn, “Spinodal decomposition in cube crystals,” Acta Met., 10, No. 3, 179–183 (1962).Google Scholar
  20. 20.
    J. W. Cahn, “Coherent fluctuation and nucleation in isotropic solids,” Acta Met., 10, No. 10, 907–913 (1962).Google Scholar
  21. 21.
    J. W. Cahn, “Magnetic aging of spinodal alloys,” J. Appl. Phys., 34, No. 12, 3581–3586 (1963).Google Scholar
  22. 22.
    J. W. Cahn, “Phase separation by spinodal decomposition in isotropic solids,” J. Chem. Phys., 42, No. 1, 93–99 (1965).Google Scholar
  23. 23.
    J. W. Cahn, “Spinodal decomposition,” Trans. AIME, 242, No. 2, 166–180 (1968).Google Scholar
  24. 24.
    D. W. Hoffman and J. W. Cahn, “A vector thermodynamics for anisotropic surfaces. I. Fundamentals and applications to plane surface junctions,” Surface Sci., 31, 368–388 (1972).Google Scholar
  25. 25.
    G. Z. Gershuni, E. M. Zhukhovitskii, and A. A. Nepomnyashchii, Stability of Convective Currents [in Russian], Nauka, Moscow (1989).Google Scholar
  26. 26.
    P. Debye, Selected Works [Russian translation], Nauka, Leningrad (1987).Google Scholar
  27. 27.
    P. G. de Gennes, “Dynamics of fluctuation and spinodal decomposition in polimer blends,” J. Chem. Phys., 72, No. 9, 4756–4763 (1980).MathSciNetzbMATHGoogle Scholar
  28. 28.
    P. G. de Gennes, “Dynamics of fluctuation and spinodal decomposition in polimer blends,” J. Chem. Phys., 74, No. 5, 3086 (1981).MathSciNetGoogle Scholar
  29. 29.
    Proc. of the 8-th Pacific Rim Int. Congress on Advanced Materials and Processing. USA, Hawaii, 4–9 August, 2013.Google Scholar
  30. 30.
    P. de Gennes, The Physics of Liquid Crystals, Clarendon Press, Oxford (1974).zbMATHGoogle Scholar
  31. 31.
    P. de Gennes, Scaling Concepts in Polymer Physics, Cornell Univ. Press (1980).Google Scholar
  32. 32.
    S. Gorsse, P. B. Pereira, R. Decourt, and E. Sellier, “Microstructure engineering design for thermoelectric materials: An approach to minimize thermal diffusivity,” Chem. Mater., No. 22, 988–993 (2010).Google Scholar
  33. 33.
    A. A. Alekseev, E. N. Kablov, N. V. Petrushin, E. V. Filonova, A. Ya. Kochubei, E. A. Lukina, D. V. Zaitsev, and I. A. Treninkov, “The mechanism of plastic flow stability loss in highrhenium high-temperature nickel alloys,” in: Proc. of the Int. Sci. and Tech. Conf. Dedicated to the 100th Anniversary of the Birth of Academician S. T. Kishkin “Scientific Ideas of S. T. Kishkin and Modern Materials science,” VIAM, Moscow (2006), pp. 168–171.Google Scholar
  34. 34.
    G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems, Springer (1977).Google Scholar
  35. 35.
    H. Ziegler, Some Extremum Principles in Irreversible Thermodynamics, with Application to Continuum Mechanics, North-Holland, Amsterdam (1962).Google Scholar
  36. 36.
    L. M. Matyushev and V. D. Seleznev, The Principle of Maximal Entropy Production in Physics and Related Sciences [in Russian], Uralsk. Gos. Tekhn. Univ., Ekaterinburg, 2006.Google Scholar
  37. 37.
    L. A. Prokudina, Instability of Physical and Chemical Systems at Phase Transitions and Violation of Spatial Symmetry [in Russian], Diss. Doct. Sci., South Ural State Univ., Chelyabinsk (1999).Google Scholar
  38. 38.
    L. D. Landau and E. M. Lifshitz, Theoretical Physics, Vol. 6, Hydrodynamics [in Russian], Nauka, Moscow (1988).Google Scholar
  39. 39.
    D. A. Bratsun, Dynamics of Multiphase Multicomponent Fluids with Elements of External Control [in Russian], Diss. Doct. Sci., Perm. State Univ., Perm (2010).Google Scholar
  40. 40.
    A. V. Zyuzgin, Experimental Study of Thermal Convection in Varying Force Fields [in Russian], Diss. Doct. Sci., Perm. State Univ., Perm (2011).Google Scholar
  41. 41.
    G. Z. Gershuni and E. M. Zhukhovitskii, Convective Stability of Incompressible Fluid [in Russian], Nauka, Moscow (1972).Google Scholar
  42. 42.
    G. Z. Gershuni, E. M. Zhukhovitskii, and A. A. Nepomnyashchii, Stability of Convective Currents [in Russian], Nauka, Moscow (1989).Google Scholar
  43. 43.
    R. Betchov and V. Criminale, Questions of Hydrodynamic Stability [Russian translation], Mir, Moscow (1977).Google Scholar
  44. 44.
    M. A. Gol’dshtik and V. N. Stern, Hydrodynamic Stability and Turbulence [in Russian], Nauka, Novosibirsk (1977).Google Scholar
  45. 45.
    D. Joseph, Stability of Fluid Motion, Mir, Moscow (1981).Google Scholar
  46. 46.
    G. Schlichting, Turbulence Emergence, Inostr. Lit., Moscow (1962).Google Scholar
  47. 47.
    V. J. Shkadov, Several Methods and Problems of Hydrodynamic Stability Theory [in Russian], Proc. of the Inst. of Mechanics, Moscow State Univ., No. 25, Moscow State Univ., Moscow (1973).Google Scholar
  48. 48.
    Y. S. Kachanov, V. V. Kozlov, and V. J. Levchenko, The Emergence of Turbulence in the Boundary Layer [in Russian], Nauka, Novosibirsk (1982).Google Scholar
  49. 49.
    A. V. Getling, Rayleigh–Benard Convection. The Structure and Dynamics, Editorial URSS, Moscow (1999).zbMATHGoogle Scholar
  50. 50.
    A. V. Getling, “Spatial patterns formed by Rayleigh–Benard convection,” Usp. Fiz. Nauk, 161, No. 9, 1–80 (1991).Google Scholar
  51. 51.
    A. E. Samoilova, Convective Stability of Horizontal Layers of Fluid with Deformable Boundary [in Russian], Diss. Cand. Sci., Perm. State Univ., Perm (2015).Google Scholar
  52. 52.
    V. K. Andreev and V. B. Bekezhanova, Stability Nonisothermal Fluids [in Russian], Sib. Fed. Univ., Krasnoyarsk (2010).Google Scholar
  53. 53.
    V. G. Babskii, N. D. Kopachevskii, and A. D. Myshkis, Fluid Weightlessness [in Russian], Nauka, Moscow (1976).Google Scholar
  54. 54.
    V. V. Pukhnachov, “Model convective movement at low gravity,” Model. Mech., 6, No. 4, 47–56 (1992).Google Scholar
  55. 55.
    A. D. Zeytounian, “The problem thermocapillary Benard–Marangoni instability,” UFN, 168, No. 3, 259–286 (1998).Google Scholar
  56. 56.
    V. K. Andreev, V. S. Zakhvataev, and E. A. Ryabitsky, Thermocapillary Instability, Nauka, Novosibirsk (2000).Google Scholar
  57. 57.
    L. G. Napolitano, “Plane Marangoni–Poiseulle flow of two immiscible fluids,” Acta Astronaut., 7, No. 4, 461–478 (1980).zbMATHGoogle Scholar
  58. 58.
    S. J. VanHook, M. Schatz, J. Swift, W. McCormick, and H. Swinney, “Long-wavelength surface-tension-driven Benard convection: Experiment and theory,” J. Fluid Mech., 345, 45–78 (1997).MathSciNetzbMATHGoogle Scholar
  59. 59.
    A. Oron, “Three-dimensional nonlinear dynamics of thin liquid films,” Phys. Rev. Lett., 85, No. 10, 2108 (2000).zbMATHGoogle Scholar
  60. 60.
    A. Oron, S. H. Davis, and S. G. Bankoff, “Long-scale evolution of thin liquid films,” Rev. Mod. Phys., 69, No. 3, 931 (1997).Google Scholar
  61. 61.
    T. V. Barmakova, L. A. Uvarova, and N. M. Barmakova, “Dynamics thermocapillary instability in the non-isothermal evaporation of multicomponent liquid mixtures,” Complex Systems Processes, No. 2, 33–39 (2012).Google Scholar
  62. 62.
    D. A. Bograchev, A. A. Preobrazenskii, and A. D. Davydov, “Rayleigh–Benard convection in a plane layer of electrolyte solution between the two horizontal ion-selective membranes,” JPhCh, 82, No. 11, 2154–2159 (2008).Google Scholar
  63. 63.
    H. Haken, Synergetics. An Introduction, Springer, Berlin (1977).zbMATHGoogle Scholar
  64. 64.
    E. A. Lukashev, N. N. Yakovlev, E. V. Radkevich, and O. A. Vasil’yeva, “On the problems of the laminar-turbulent transition,” Rep. Russ. Acad. Sci., 471, No. 3, 1–5 (2016).MathSciNetzbMATHGoogle Scholar
  65. 65.
    P. Glansdorff and I. Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuations, Mir, Moscow (1973).zbMATHGoogle Scholar
  66. 66.
    V. G. Danilov, G. A. Omel’yanov, and E. V. Radkevich, “Asymptotic solution of the conserved phase field system in the fast relaxation case,” Euras. J. Appl. Math., 9, 1–21 (1998).MathSciNetzbMATHGoogle Scholar
  67. 67.
    V. G. Danilov, G. A. Omel’yanov, and E. V. Radkevich, “Hugoniot-type conditions and weak solutions to the phase field system,” Euras. J. Appl. Math., 10, 55–77 (1999).MathSciNetzbMATHGoogle Scholar
  68. 68.
    A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics [in Russian], Vol. 1 Nauka, Moscow (1965).Google Scholar
  69. 69.
    A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1966).Google Scholar
  70. 70.
    L. G. Loitsianskii, Mechanics of Liquids and Gases [in Russian], Drofa, Moscow (2003).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • E. V. Radkevich
    • 1
    Email author
  • E. A. Lukashev
    • 1
  • O. A. Vasil’yeva
    • 1
  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations