Advertisement

Journal of Mathematical Sciences

, Volume 244, Issue 2, pp 235–253 | Cite as

Homogenization of A Boundary-Value Problem in A Domain Perforated by Cavities of Arbitrary Shape with A General Nonlinear Boundary Condition On Their Boundaries: The Case of Critical Values of the Parameters

  • M. N. Zubova
  • T. A. ShaposhnikovaEmail author
Article
  • 2 Downloads

Abstract

A homogenized model is constructed (with rigorous justification) for a boundary-value problem for the Poisson equation in a periodically perforated domain with a nonlinear Robin condition on the boundary of the cavities. This condition contains a parameter depending on the period of the structure and a function σ(x, u) responsible for the nonlinearity. The cavities can have an arbitrary shape and the parameters of the problem have “critical values,” which results in a homogenized problem with a different type of nonlinearity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Kaizu, “The Poisson equation with semilinear boundary conditions in domains with many tiny holes,” J. Fac. Sci. Univ. Tokyo Sect. IA Math., 36, 43–86 (1989).MathSciNetzbMATHGoogle Scholar
  2. 2.
    S. Kaizu, “The Poisson equation with nonautonomous semilinear boundary conditions in domains with many tiny holes,” SIAM J. Math. Anal., 22, No. 5, 1222–1245 (1991).MathSciNetCrossRefGoogle Scholar
  3. 3.
    M. V. Goncharenko, “Asymptotic behavior of the third boundary-value problem in domains with fine-grained boundaries,” Gkuto, 203–213 (1997).Google Scholar
  4. 4.
    D. Cioranescu and F. Murat, “A strange term coming from Nowhere,” in: A. Cherkaev and R. Kohn, eds., Topics in Mathematical Modeling of Composite Materials, Springer, New York (1997), pp. 45–94.CrossRefGoogle Scholar
  5. 5.
    J. I. Dìaz, D. Gòmez-Castro, A. V. Podol’skii, and T. A. Shaposhnikova, “Homogenization of the p-Laplace operator with nonlinear boundary condition on critical size particles: identifying the starnge term for some non smooth and multivalued operators,” Dokl. Math., 94, No. 1, 387–392 (2016).MathSciNetCrossRefGoogle Scholar
  6. 6.
    J. I. Dìaz, D. Gòmez-Castro, A. V. Podol’skii, and T. A. Shaposhnikova, “Homogenization of variational inequalities of Signorini type for the p-Laplacian in perforated domains when p ∈ (1, 2),” Dokl. Math., 95, No. 2, 151–156 (2017).MathSciNetCrossRefGoogle Scholar
  7. 7.
    J. I. Dìaz, D. Gòmez-Castro, A. V. Podol’skii, and T. A. Shaposhnikova, Adv. Nonlinear Anal., 8, No. 1 (2017).Google Scholar
  8. 8.
    J. I. Dìaz, D. Gòmez-Castro, A. V. Podol’skii, and T. A. Shaposhnikova “On the asymptotic limit of the effectoveness of reaction-diffusion equations in perforated media,” J. Math. Anal. Appl., 455, 1597–1613 (2017).MathSciNetCrossRefGoogle Scholar
  9. 9.
    J. I. Dìaz, D. Gòmez-Castro, T. A. Shaposhnikova, and M. N. Zubova, “Change of homogenized absorption term in diffusion processes with reaction on the boundary of periodically distributed asymmetric particles in critical size,” Electron. J. Differ. Equ., 178, 1–25 (2017).MathSciNetzbMATHGoogle Scholar
  10. 10.
    J. I. Dìaz, D. Gòmez-Castro, T. A. Shaposhnikova, and M. N. Zubova, “Classification of homogenized limits of diffusion problems with spatially dependent reaction over critical size particles,” Appl. Anal., 98, No. 1-2, 232–255 (2019).MathSciNetCrossRefGoogle Scholar
  11. 11.
    J. I. Dìaz, D. Gòmez-Castro, A. V. Podol’skii, and T. A. Shaposhnikova, “On asymptotic limit of the effectiveness of reaction-diffusion equations in periodically structured media,” J. Math. Anal. Appl., 455, No. 2, 1597–1613 (2017).MathSciNetCrossRefGoogle Scholar
  12. 12.
    D. Gòmez, M. Lobo, E. Perez, A. V. Podol’skii, and T. A. Shaposhnikova, “Unilateral problems for the p-Laplace operator in perforated media involving large parameters,” ESAIM Control Optim. Calc. Var., 24, No. 3, 921–964 (2017).MathSciNetCrossRefGoogle Scholar
  13. 13.
    D. Gòmez, M. Lobo, E. Pèrez, and T. A. Shaposhnikova, “Averaging in variational inequalities with nonlinear restrictions along manifolds,” CR M´ecanique, 339, No. 6, 406–410 (2011).CrossRefGoogle Scholar
  14. 14.
    D. Gòmez, M. Lobo, E. Pèrez, and T. A. Shaposhnikova, “On homogenization of nonlinear Robin type boundary conditions for cavities along manifolds and associated spectral problems,” Asymptotic Anal., 80, No. 3-4, 289–322 (2012).MathSciNetCrossRefGoogle Scholar
  15. 15.
    D. Gòmez, M. Lobo, E. Pèrez, and T. A. Shaposhnikova, “On critical parameters in homogenization of perforated domain by thin tubes with nonlinear flux and related spectral problems,” Math. Methods Appl. Sci., 38, 2606–2629 (2015).MathSciNetCrossRefGoogle Scholar
  16. 16.
    D. Gòmez, E. Pèrez, A. V. Podol’skii, and T. A. Shaposhnikova, “Homogenization of variational inequalities for the p-Laplace operator in perforated medi along manifolds,” Appl. Math. Optim., 475, 1–19 (2017).Google Scholar
  17. 17.
    W. Jager, M. Neuss-Radu, and T. A. Shaposhnikova, “Homogenization of a variational inequality for the Laplace operator with nonlinear restriction for the flux on the interior boundary of a perforated domain,” Nonlinear Anal., 15, 367–380 (2014).MathSciNetCrossRefGoogle Scholar
  18. 18.
    O. A. Oleinik and T. A. Shaposhnikova, “On homogenization problem for the Laplace operator in partially perforated domains with Neumann conditions on the boundary of cavities,” Rend. Mat. Acc. Lincei, S. 9, 6, 133–142 (1995).MathSciNetzbMATHGoogle Scholar
  19. 19.
    O. A. Oleinik and T. A. Shaposhnikova, “On homogenization of the Poisson equation in partially perforated domains with arbitrary density of cavities and mixed type conditions on their boundary,” Rend. Mat. Acc. Lincei, S. 9, 7, 129–146 (1996).MathSciNetzbMATHGoogle Scholar
  20. 20.
    T. A. Shaposhnikova and M. N. Zubova, “Homogenization of boundary-value problems in perforated domins with the third boundary condition and the resulting change in the character of the nonlinearity in the problems,” Differ. Equ., 47, 78–90 (2011).MathSciNetCrossRefGoogle Scholar
  21. 21.
    T. A. Shaposhnikova and M. N. Zubova, “Homogenization of the boundary-value problem for the Laplace operator in a perforated domain with a rapidly oscillating nonhomogeneous Robin-type condition on the boundary of holes in the critical case,” Dokl. Math., 96, No. 1, 344–347 (2017).MathSciNetCrossRefGoogle Scholar
  22. 22.
    T. A. Shaposhnikova and M. N. Zubova, “Homogenization of variational inequality for the Laplace operator with nonlinear constraint on the flow in domains perforated by arbitrary shaped sets: Critical case,” J. Math. Sci., 232, No. 4, 573–590 (2018).MathSciNetCrossRefGoogle Scholar
  23. 23.
    A. V. Podolskiy and T. A. Shaposhnikova, “Homogenization of the boundary-value problem for the Laplace operator in a domain perforated along (n − 1)-dimensional manifold with nonlinear Robin-type boundary condition on the boundary of arbitrary shape holes: Critical case,” Dokl. Math., 96, No. 3, 601–606 (2017).CrossRefGoogle Scholar
  24. 24.
    J.-L. Lions, Some Methods of Solving Non-Linear Boundary Value Problems, Dunod, Gauthier-Villars, Paris (1969).Google Scholar
  25. 25.
    O. A. Oleinik, A. S. Shamaev, and G. A. Yosifian, Mathematical Problems in Elasticity and Homogenization, North-Holland, Amsterdam (1982).zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations