Advertisement

Journal of Mathematical Sciences

, Volume 244, Issue 2, pp 158–169 | Cite as

Equations of Symmetric MHD-Boundary Layer of Viscous Fluid with Ladyzhenskaya Rheology Law

  • R. R. Bulatova
  • V. N. Samokhin
  • G. A. ChechkinEmail author
Article
  • 4 Downloads

Abstract

One considers flow past a body in an electrically conductive viscous fluid in magnetic field, the fluid being subject to a nonlinear rheological law. Solutions of the corresponding system of magnetohydrodynamic boundary layer are examined in a neighborhood of a frontal critical point.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Prandtl, “Über Flüssigkeitsbewegungen bei sehr kleiner Reibund,” in: Verh. Int. Math. Kongr. Heidelberg, 1904, Teubner (1905), pp. 484–494.Google Scholar
  2. 2.
    J. Leray, “Étude des diverses ´equation int´egrales nonlin´eares et de quelques probl`emes que pose l’Hydrodynamique.,” J. Math. Pures Appl., 12, 1–82 (1933).Google Scholar
  3. 3.
    H. Schlichting and K. Gersten, Boundary-Layer Theory, Springer, Berlin (2000).CrossRefGoogle Scholar
  4. 4.
    R. Temam and X. Wang, “Remarks on the Prandtl equation for a permeable wall,” Z. Angew. Math. Mech., 80, No. 11-12, 835–843 (2000).MathSciNetCrossRefGoogle Scholar
  5. 5.
    W. E, “Boundary layer theory and the zero-viscosity limit of the Navier–Stokes equation,” Acta Math. Sin. (Engl. Ser.), 16, No. 2, 207–218 (2000).Google Scholar
  6. 6.
    M. C. Lopes Filho, “Boundary layers and the vanishing viscosity limit for incompressible 2D flow,” in: Lectures on the Analysis of Nonlinear Partial Differential Equations, Pt. 1, Morningside Lect. Math., Vol. 1, Int. Press, Somerville (2012), pp. 1–29.Google Scholar
  7. 7.
    O. A. Oleinik and V. N. Samokhin, Mathematical Models in Boundary Layer Theory, Chapman & Hall/CRC (1999).Google Scholar
  8. 8.
    M. S. Romanov, V. V. Samokhin, and G. A. Chechkin, “On the rate of convergence of solutions to the Prandtl equations in a rapidly oscillating magnetic field,” Dokl. RAN, 426, No. 4, 450–456 (2009).MathSciNetzbMATHGoogle Scholar
  9. 9.
    S. V. Spiridonov, “A homogenization theorem for a stratified magnetic fluid with micro-inhomogeneous magnetic field and boundary conditions,” Probl. Mat. Anal., 44, 133–143 (2010).Google Scholar
  10. 10.
    S. V. Spiridonov and G. A. Chechkin, “Percolation of the boundary layer of a Newtonian fluid through a perforated obstacle,” Probl. Mat. Anal., 45, 93–102 (2010).MathSciNetzbMATHGoogle Scholar
  11. 11.
    A. Yu. Linkevich, S. V. Spiridonov, and G. A. Chechkin, “On the boundary layer of a Newtonian fluid flowing on a rough surface and percolating through a perforated obstacle,” Ufimsk. Mat. Zh., 3, No. 3, 93–104 (2011).MathSciNetzbMATHGoogle Scholar
  12. 12.
    M. S. Romanov, “Homogenization of the boundary layer of a pseudoplastic fluid in the presence of rapidly oscillating external forces,” Tr. Semin. Petrovskogo, 28, 300–328 (2011).Google Scholar
  13. 13.
    Y. Amirat, G. A. Chechkin, and M. S. Romanov, “On multiscale homogenization problems in boundary layer theory,” Z. Angew. Math. Phys., 63, 475–502 (2012).MathSciNetCrossRefGoogle Scholar
  14. 14.
    A. Yu. Linkevich, T. S. Ratiu, S. V. Spiridonov, and G. A. Chechkin, “Thin layer of a non-Newtonian fluid flowing on a rough surface and percolating through a perforated obstacle,” Probl. Mat. Anal., 68, 173–182 (2013).MathSciNetzbMATHGoogle Scholar
  15. 15.
    A. Yu. Linkevich, V. N. Samokhin, S. V. Spiridonov, and G. A. Chechkin, “Homogenization of a modified Ladyzhenskaya fluid percolating through a porous obstacle,” Izv. Vyssh. Uchebn. Zaved. Probl. Poligraf. Izd. Dela, No. 2, 2–35 (2016).Google Scholar
  16. 16.
    O. A. Ladyzhenskaya, Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York (1969).zbMATHGoogle Scholar
  17. 17.
    V. N. Samokhin, G. M. Fadeeva, and G. A. Chechkin, “Equations of boundary layer for a modified Navier–Stokes system,” Tr. Semin. Petrovskogo, 28, 329–361 (2010).Google Scholar
  18. 18.
    N. D. Vvedenskaya, “On the solution of boundary layer equations near a critical point,” Zh. Vychisl. Mat. Mat. Fiz., 7, 924–929 (1967).Google Scholar
  19. 19.
    Ph. Hartman, Ordinary Differential Equations, SIAM (2002).Google Scholar
  20. 20.
    V. N. Samokhin, G. M. Fadeeva, and G. A. Chechkin, “O. A. Ladyzhenskaya’s modification of the Navier–Stokes equations and the theory of boundary layer,” Vestn. MGUP, No. 5, 127–143 (2009).Google Scholar
  21. 21.
    V. N. Samokhin and G. A. Chechkin, “Equations of boundary layer for a generalized Newtonian medium near a critical point,” Tr. Semin. Petrovskogo, 31, 158–176 (2016).Google Scholar
  22. 22.
    R. R. Bulatova, V. N. Samokhin, and G. A. Chechkin, “MHD-boundary layer equations for the Ladyzhenskaya modification of viscous incompressible fluid equations. Existence and uniqueness of solutions. Effect of the magnetic field on separation of the boundary layer,” Probl. Mat. Anal., No. 91 (2018).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • R. R. Bulatova
    • 1
  • V. N. Samokhin
    • 1
  • G. A. Chechkin
    • 1
    Email author
  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations