Advertisement

Journal of Mathematical Sciences

, Volume 244, Issue 1, pp 65–94 | Cite as

On the Fourier series and Fourier transforms

  • Roald M. TrigubEmail author
Article
  • 8 Downloads

Abstract

This survey article is addresses to classical harmonic analysis. In particular, a number of classical theorems are presented with the simplest, in our opinion, proofs (see also [1] and references therein). Some results of the present article are new and are published for the first time.

Keywords

Theorems by Bernstein Paley–Wiener Levitan and Kotel’nikov–Shannon uncertainty principle Titchmarsh theorem of convolution Whitney theorem Euler–Maclaurin generalized formula Wiener algebra positive definiteness Bessel function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. M. Trigub, Collection of Tests and Theorems on Mathematical Analysis [in Russian], Ridero, (2018); https://ridero.ru/books/sbornik. zadach i teorem po matematicheskomu analizu.
  2. 2.
    A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis, Dover, New York, 1999.Google Scholar
  3. 3.
    B. Ya. Levin, Lectures on Entire Functions, Amer. Math., Soc., Providence, RI, 1996.CrossRefGoogle Scholar
  4. 4.
    E. C. Titchmarsh, The Theory of Functions, Oxford Univ. Press, London, 1975.zbMATHGoogle Scholar
  5. 5.
    A. Zygmund, Trigonometric Series, Cambridge Univ. Press, Cambridge, 1959.zbMATHGoogle Scholar
  6. 6.
    G. H. Hardy and W. W. Rogosinski, Fourier Series, Dover, New York, 2013.zbMATHGoogle Scholar
  7. 7.
    N. K. Bary, A Treatise on Trigonometric Series, Macmillan, New York, 1964.zbMATHGoogle Scholar
  8. 8.
    R. M. Trigub and E. S. Belinsky, Fourier Analysis and Approximation of Functions, Springer, Berlin, 2004.CrossRefGoogle Scholar
  9. 9.
    E. Liflyand, S. Samko, R. Trigub, “The Wiener algebra of absolutely convergence Fourier integrals: an overview,” Anal. Math. Phys., 2, No. 1, 1–68 (2012).MathSciNetCrossRefGoogle Scholar
  10. 10.
    E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, 1971.zbMATHGoogle Scholar
  11. 11.
    R. M. Trigub, “Summability of Fourier trigonometric series at d–points and a generalization of the Abel–Poisson method,” Izv. RAN, Ser. Mat., 79, No. 4, 205–224 (2015).CrossRefGoogle Scholar
  12. 12.
    S. N. Bernstein, Collection of Works [in Russian], Vol. 1, Izd. AN SSSR, Moscow, 1952.Google Scholar
  13. 13.
    N. I. Achieser, Theory of Approximation, Dover, New York, 1992.zbMATHGoogle Scholar
  14. 14.
    R. M. Trigub, “On the Chebyshev polynomials and entire coefficients,” Mat. Zametki, 105, No. 2, 302–312 (2019).CrossRefGoogle Scholar
  15. 15.
    Roald M. Trigub, “Fourier multipliers and K–functionals in spaces of smooth functions,” Ukr. Math. Bull., 2, No. 2, 239–284 (2005).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Sumy State UniversitySumyUkraine

Personalised recommendations