Journal of Mathematical Sciences

, Volume 243, Issue 5, pp 746–773

# Asymptotics of Eigenvalues in Spectral Gaps of Periodic Waveguides with Small Singular Perturbations

• S. A. Nazarov
Article

The asymptotics of eigenvalues appearing near the lower edge of a spectral gap of the Dirichlet problem is studied for the Laplace operator in a d-dimensional periodic waveguide with a singular perturbation of the boundary by creating a hole with a small diameter ε. Several versions of the structure of the gap edge are considered. As usual, the asymptotic formulas are different in the cases d ≥ 3 and d = 2, where the eigenvalues occur at distances O(ε2(d−2)) or O(ε2d) and O(|ln ε|−2) or O(ε4), respectively, from the gap edge. Other types of singular perturbation of the waveguide surface and other types of boundary conditions are discussed, which provide the appearance of eigenvalues near both edges of one or several gaps.

## References

1. 1.
O. A. Ladyzhenskaya , Boundary Value Problems of Mathematical Physics, Springer-Verlag, New York etc. (1985).
2. 2.
3. 3.
A. V. Sobolev and J. Walthoe, “Absolute continuity in periodic waveguides,” Proc. London Math. Soc., 85, No. 1, 717–741 (2002).
4. 4.
T. A. Suslina and R. G. Shterenberg, “Absolute continuity of the spectrum of the magnetic Schrödinger operator with a metric in a two-dimensional periodic waveguide,” Algebra Analiz, 14:2, 159–206 (2002).
5. 5.
I. Kachkovskii and N. Filonov, “Absolute continuity of the spectrum of a periodic Schrödinger operator in a multidimensional cylinder,” Algebra Analiz, 21:1, 133–152 (2009).
6. 6.
I. M. Gel’fand, “Expansion in eigenfunctions of an equation with periodic coefficients,” Dokl. Akad. Nauk SSSR, 73, 1117–1120 (1950).Google Scholar
7. 7.
S. A. Nazarov, “Elliptic boundary value problems with periodic coefficients in a cylinder,” Izv. Akad. Nauk SSSR, Ser. Mat., 45:1, 101–112 (1981).
8. 8.
S. A. Nazarov and B. A. Plamenevskii, Elliptic Problems in Domains With Piecewise Smooth Boundaries [in Russian], Nauka, Moscow (1991).Google Scholar
9. 9.
T. Kato, Perturbation Theory for Linear Operators, Grundlehren Math. Wiss., 132, Springer-Verlag, New York (1966).Google Scholar
10. 10.
M. M. Skriganov, “Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators,” Trudy Mat. Inst. Steklov., 171, 3–122 (1985).
11. 11.
P. Kuchment, Floquet Theory for Partial Differential Equations, Birchäuser, Basel (1993).
12. 12.
P. A. Kuchment, “Floquet theory for partial differential equations,” Uspekhi Mat. Nauk, 37:4 (226), 3–52 (1982).
13. 13.
P. Kuchment, “The mathematics of photonic crystals,” Chap. 7 in Mathematical Modeling in Optical Science, in: Frontiers in Applied Mathematics, SIAM, 22 (2001), pp. 207–272.Google Scholar
14. 14.
S. A. Nazarov, “Properties of spectra of boundary value problems in cylindrical and quasicylindrical domain Sobolev Spaces in Mathematics,” Vol. II (Maz’ya V., Ed.) Intern. Math. Series, 9, 261–309 (2008).Google Scholar
15. 15.
W. Bulla, F. Gesztesy, W. Renger, and B. Simon, “Weakly coupled bound states in quantum waveguides,” Proc. Amer. Math. Soc., 125, No. 8, 1487–1495 (1997).
16. 16.
V. V. Grushin, “On the eigenvalues of finitely perturbed Laplace operators in infinite cylindrical domains,” Mat. Zamet., 75:3, 360–371 (2004).
17. 17.
R. R. Gadyl’shin, “Local perturbations of quantum waveguides,” Teoret. Mat. Fiz., 145:3, 358–371 (2005).
18. 18.
D. I. Borisov, “The discrete spectrum of a pair of nonsymmetric waveguides connected by a window,” Mat. Sborn., 197, No. 4, 3–32 (2006).
19. 19.
S. A. Nazarov, “Variational and asymptotic methods for finding eigenvalues below the continuous spectrum threshold,” Sibirsk. Mat. Zh., 51, No. 5, 1086–1101 (2010).
20. 20.
M. Sh. Birman and M. Z. Solomyak, “Discrete negative spectrum under nonregular perturbations (polyharmonic operators, Schr¨odinger operators, with a magnetic fields, periodic operators),” in: Rigorous Results in Quantum Dynamics (Liblice, 1990), World Sci. Publishing, River Edge, NJ (1991), pp. 25–36.Google Scholar
21. 21.
M. Sh. Birman, ”The discrete spectrum of the periodic Schrödinger operator perturbed by a decreasing potential,” Algebra Analiz, 8, No. 1, 3–20 (1996).Google Scholar
22. 22.
M. Sh. Birman, “The discrete spectrum in gaps of the perturbed periodic Schrödinger operator. I. Regular perturbations,” in: Boundary Value Problems, Schrödinger Operators, Deformation Quantization. Math. Top., Akademie Verlag, Berlin, 8 (1995), pp. 334–352.Google Scholar
23. 23.
M. Sh. Birman, “The discrete spectrum in gaps of the perturbed periodic Schrödinger operator. II. Nonregular perturbations,” Algebra Analiz, 9, No. 6, 62–89 (1997).
24. 24.
A. Figotin and A. Klein, “Midgap defect modes in dielectric and acoustic media,” SIAM J. Appl. Math., 58, No. 6, 1748–1773 (1998).
25. 25.
H. Ammari and F. Santosa, “Guided waves in a photonic bandgap structure with a line defect,” SIAM J. Appl. Math., 64, No. 6, 2018–2033 (2004).
26. 26.
D. Miao and F. Ma, “On guided waves created by line defects,” J. Stat. Phys., 130, 1197–1215 (2008).
27. 27.
S. A. Nazarov, “Gaps and eigenfrequencies in the spectrum of a periodic acoustic waveguide,” Akustik Zh., 59, No. 3, 312–321 (2013).Google Scholar
28. 28.
B. M. Brown, V. Hoang, M. Plum, and I. Wood, “Spectrum created by line defects in periodic structures,” Math. Nachr., 287, 1972–1985 (2014).
29. 29.
S. A. Nazarov, “Bounded solutions in a T-shaped waveguide and the spectral properties of the Dirichlet ladder,” Zh. Vychisl. Mat. Mat. Fiz., 54, No. 8, 1299–1318 (2014).
30. 30.
B. Delourme, S. Fliss, P. Joly, and E. Vasilevskaya, “Trapped modes in thin and infinite ladder like domains. Part 1: Existence results,” Asymptotic Analysis, 103, No. 3, 103–134 (2017).
31. 31.
S. A. Nazarov, “Asymptotics of eigenvalues in spectral gaps under regular perturbations of walls of a periodic waveguide,” Probl. Mat. Analiz., Novosibirsk, Vol. 89, 63–98 (2017).Google Scholar
32. 32.
S. A. Nazarov, “Almost standing waves in a periodic waveguide with resonator, and nearthreshold eigenvalues,” Algebra Analiz, 28, No. 3, 111–160 (2016).Google Scholar
33. 33.
D. V. Evans, M. Levitin, and D. Vasil’ev, “Existence theorems for trapped modes,” J. Fluid Mech., 261, 21–31 (1994).
34. 34.
S. A. Nazarov, “Asymptotic expansions of eigenvalues in the continuous spectrum of a regularly perturbed quantum waveguide,” Theoret. Mat. Fiz., 167, No. 2, 239–262 (2011).
35. 35.
S. A. Nazarov, “Enforced stability of a simple eigenvalue in the continuous spectrum,” Funkt. Anal. Prilozhen., 47, No. 3, 37–53 (2013).
36. 36.
I. C. Gokhberg and M. G. Kreyn, Introduction to the Theory of Linear not Self-Adjoint operators, Nauka, Moscow (1965).Google Scholar
37. 37.
M. M. Vainberg and V. A. Trenogin, Theory of Branching of Solutions of Non-Linear Equations [in Russian], Nauka, Moscow (1969).
38. 38.
W. G. Mazja, S. A. Nazarov, and B. A. Plamenewski, Asymptotische Theorie Elliptischer Randwertaufgaben in Singulär Gestörten Gebieten, Vol. 1, Akademie-Verlag, Berlin (1991).Google Scholar
39. 39.
M. Van Dyke, Perturbation Methods in Fluid Mechanics [Russian translation], Mir, Moscow (1967).
40. 40.
A. M. Il’in, Matching of Asymptotic Expansions of Solutions of Boundary-Value Problems [in Russian], Nauka, Moscow (1989).Google Scholar
41. 41.
S. A. Nazarov, “Opening a gap in the continuous spectrum of a periodically perturbed waveguide,” Mat. Zamet., 87, No. 5, 764–786 (2010).
42. 42.
F. L. Bakharev, S. A. Nazarov, and K. M. Ruotsalainen, “A gap in the spectrum of the Neumann–Laplacian on a periodic waveguide,” Appl. Analys., 88, 1–17 (2012).
43. 43.
D. Borisov and K. Pankrashkin, “Quantum waveguides with small periodic perturbations: gaps and edges of Brillouin zones,” J. Physics A: Math. Theor., 46, No. 23, 203–235 (2013).
44. 44.
S. A. Nazarov, “Asymptotic behavior of spectral gaps in a regularly perturbed periodic waveguide,” Vestn. St.-Petersb. Univ., Ser. 1,2, No. 7, 54–63 (2013).Google Scholar
45. 45.
V. G. Maz’ya, S. A. Nazarov, and B. A. Plamenevskii, “Asymptotic expansions of eigenvalues of boundary value problems for the Laplace operator in domains with small holes,” Izv. Akad. Nauk SSSR, Ser. Mat., 48, No. 2, 347–371 (1984).
46. 46.
G. Polya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics [Russian translation], Fizmatgiz, Moscow (1962).
47. 47.
N. S. Landkof, Foundations of Modern Potential Theory [in Russian], Nauka, Moscow (1966).Google Scholar
48. 48.
V. A. Kondrat’ev, “Boundary-value problems for elliptic equations in domains with conical or corner points,” Trudy Moskov. Mat. Obshch., 16, 209–292 (1967).Google Scholar
49. 49.
S. A. Nazarov, “On the constants in the asymptotic expansion of solutions of elliptic boundary value problems with periodic coefficients in a cylinder,” Vestn. Leningr. Univ., Ser. 1,3, No. 15, 16–22 (1985).Google Scholar
50. 50.
S. A. Nazarov, “The asymptotics of frequencies of elastic waves trapped by a small crack in an anisotropic waveguide,” Mekh. tverd. tela, No. 6, 112–122 (2010).Google Scholar
51. 51.
S. A. Nazarov, M. Specovius-Neugebauer, and J. Sokolowski, “Polarization matrices in anisotropic heterogeneous elasticity,” Asymp. Analys., 68, No. 4, 189–249 (2010).