New Supercharacter Theory for Sylow Subgroups in Orthogonal and Symplectic Groups
Article
First Online:
- 7 Downloads
Using a new approach, the supercharacter theory is constructed for the Sylow subgroups in orthogonal and symplectic groups.
Preview
Unable to display preview. Download preview PDF.
References
- 1.P. Diaconis and I. M. Isaacs, “Supercharacters and superclasses for algebra groups,” Trans. Amer. Math. Soc., 360, 2359–2392 (2008).MathSciNetCrossRefGoogle Scholar
- 2.C. A. M. André, “Basic Sums of Coadjoint Orbits of the Unitriangular group,” J. Algebra, 176, 959–1000 (1995).MathSciNetCrossRefGoogle Scholar
- 3.C. A. M. André, “Basic character table of the Unitriangular group,” J. Algebra, 241, 437–471 (2001).MathSciNetCrossRefGoogle Scholar
- 4.C. A. M. André, “Hecke algebra for the basic representations of the unitriangular group,” Proc. Amer. Math. Soc., 132, No. 4, 987–996 (2003).CrossRefGoogle Scholar
- 5.C. A. M. André and A. M. Neto, “Supercharacters of the finite the Sylow subgroup of the finite symplectic and orthogonal groups,” Pacific J. Math., 239, 201–230 (2009).MathSciNetCrossRefGoogle Scholar
- 6.C. A. M. André and A. M. Neto, “A supercharacter theory for the Sylow p-subgroups of the finite symplectic and orthogonal groups,” J. Algebra, 322, 1273–1294 (2009).MathSciNetCrossRefGoogle Scholar
- 7.C. A. M. André, J. P. Freitas, and A. M. Neto, “A supercharacter theory for involutivealgebra groups,” J. Algebra, 430, 159–190 (2015).MathSciNetCrossRefGoogle Scholar
- 8.S. Andrews, “Supercharacters of unipotent groups defined by involutions,” J. Algebra, 425, 1–30 (2015).MathSciNetCrossRefGoogle Scholar
- 9.A. N. Panov, “Supercharacter theory for groups of invertible elements of reduced algebras,” St. Petersburg Math. J., 27 1035–1047 (2016).MathSciNetCrossRefGoogle Scholar
- 10.A. N. Panov, “Supercharacters of unipotent and solvable grpups,” in: Itogi Nauki Tekh., 136, (2017) pp. 31–55.Google Scholar
Copyright information
© Springer Science+Business Media, LLC, part of Springer Nature 2019