Advertisement

Journal of Mathematical Sciences

, Volume 243, Issue 4, pp 601–611 | Cite as

Plotkin’s Geometric Equivalence, Mal’cev’s Closure, and Incompressible Nilpotent Groups

  • G. A. NoskovEmail author
Article
  • 5 Downloads

In 1997, B. I. Plotkin introduced a concept of geometric equivalence of algebraic structures and posed a question: is it true that every nilpotent torsion-free group is geometrically equivalent to its Mal’cev’s closure? A negative answer in the form of three counterexamples was given by V. V. Bludov and B. V. Gusev in 2007. In the present paper, an infinite series of counterexamples of unbounded Hirsch rank and nilpotency degree is constructed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Belegradek, “On co-Hopfian nilpotent groups,” Bull. London Math. Soc., 35, 805–811 (2003).MathSciNetCrossRefGoogle Scholar
  2. 2.
    A. Berzins, “Geometrical equivalence of algebras,” Int. J. Algebra Comput., 11, No. 4, 447–456 (2001).CrossRefGoogle Scholar
  3. 3.
    V. V. Bludov and B. V. Gusev, “Geometric equivalence of groups,” Tr. Inst. Mat. Mekh. UrO RAN, 13, No. 1, 57–78 (2007).MathSciNetzbMATHGoogle Scholar
  4. 4.
    G. Baumslag, A. Myasnikov, and V. Remeslennikov, “Algebraic geometry over groups. I. Algebraic sets and ideal theory,” J. Algebra, 219, 16–79 (1999).MathSciNetCrossRefGoogle Scholar
  5. 5.
    R. Camm, “Simple free products,” J. London Math. Soc., 28, 66–76 (1953).MathSciNetCrossRefGoogle Scholar
  6. 6.
    R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Springer, Berlin–Heidelberg–New York (1977).zbMATHGoogle Scholar
  7. 7.
    M. Goze and Yu. B. Khakimdjanov, Nilpotent Lie Algebras, Kluwer Academics Publishers (1996).Google Scholar
  8. 8.
    É. B. Vinberg, V. V. Gorbatsevich, and A. L. Onishchik, Structure of Lie Groups and Lie Algebras, Springer-Verlag (1994).Google Scholar
  9. 9.
    R. W Goodman, Nilpotent Lie Groups: Structure and Applications to Analysis, Springer-Verlag, Berlin/New York (1976).CrossRefGoogle Scholar
  10. 10.
    R. Göbel and S. Shelah, “Radicals and Plotkin’s problem concerning geometrically equivalent groups,” Proc. Amer. Math. Soc., 130, No. 3, 673–674 (2002).MathSciNetCrossRefGoogle Scholar
  11. 11.
    H. Hamrouni, “Euler characteristics on a class of finitely generated nilpotent groups,” Osaka J. Math., 50, 339–346 (2013).MathSciNetzbMATHGoogle Scholar
  12. 12.
    G. Hochschild, The Structure of Lie Groups, Holden-Day Inc., San Francisco (1965).zbMATHGoogle Scholar
  13. 13.
    M. I. Kargapolov and Ju. I. Merzljakov, Fundamentals of the Theory of Groups, Springer-Verlag, New York (1979).CrossRefGoogle Scholar
  14. 14.
    Yu. Khakimdjanov, “Characteristically nilpotent Lie algebras,” Math. Sb., 181, No. 5, 642–655 (1990).zbMATHGoogle Scholar
  15. 15.
    E. I. Khukhro and V. D. Mazurov, Unsolved Problems in Group Theory. The Kourovka Notebook, 16th ed., Novosibirsk (2006).Google Scholar
  16. 16.
    G. Leger and S. Tôgô, “Characteristically nilpotent Lie algebras,” Duke Math. J., 26, 623–628 (1959).MathSciNetCrossRefGoogle Scholar
  17. 17.
    A. I. Mal’cev, “Nilpotent torsion-free groups,” Izv. Akad. Nauk. SSSR. Ser. Mat., 13, 201–212 (1949).MathSciNetGoogle Scholar
  18. 18.
    A. I. Mal’cev, “On a class of homogeneous spaces,” Izv. Akad. Nauk. SSSR. Ser. Mat., 13, 9–32 (1949).MathSciNetGoogle Scholar
  19. 19.
    A. A. Mishchenko, Model-theoretic and algebra-geometric problems for nilpotent partial commutative groups, Ph.D. thesis, Omsk (2009).Google Scholar
  20. 20.
    A. Myasnikov and V. Remeslennikov, “Algebraic geometry over groups II, Logical foundations,” J. Algebra, 234, No. 1, 225–276 (2000).MathSciNetCrossRefGoogle Scholar
  21. 21.
    D. Nikolova and B. Plotkin, “Some notes on universal algebraic geometry,” in: Algebra. Proc. Int. Conf. on Algebra on the Occasion of the 90th Birthday of A. G. Kurosh, Moscow (1998), Walter De Gruyter Publ., Berlin (1999), pp. 237–261.Google Scholar
  22. 22.
    B. Plotkin, “Algebraic logic, varieties of algebras and algebraic varieties,” in: Proc. Int. Alg. Conf., St. Petersburg (1995), St.Petersburg (1999), pp. 189–271.Google Scholar
  23. 23.
    B. Plotkin, “Varieties of algebras and algebraic varieties,” Israel J. Math., 96, No. 2, 511–522 (1996).MathSciNetCrossRefGoogle Scholar
  24. 24.
    B. Plotkin, “Some notions of algebraic geometry in universal algebra,” Algebra Analiz.9, No. 4, 224–248 (1997).Google Scholar
  25. 25.
    B. Plotkin, “Varieties of algebras and algebraic varieties: Categories of algebraic varieties,” Siberian Adv. Math., 7, No. 2, 64–97 (1997).MathSciNetzbMATHGoogle Scholar
  26. 26.
    B. Plotkin, “Radicals in groups, operations on classes of groups, and radical classes,” Transl., II Ser. Amer. Math. Soc., 119, 89–118 (1983).zbMATHGoogle Scholar
  27. 27.
    B. Plotkin, E. Plotkin, and A. Tsurkov, “Geometrical equivalence of groups,” Commun. Algebra, 27, No. 8, 4015–4025 (1999).MathSciNetCrossRefGoogle Scholar
  28. 28.
    M. S. Raghunathan, Discrete Subgroups of Lie Groups, Springer (1972).Google Scholar
  29. 29.
    A. Tsurkov, “Geometrical equivalence of nilpotent groups,” Zap. Nauchn. Semin. POMI, 330, 259–270 (2006).MathSciNetzbMATHGoogle Scholar
  30. 30.
    S. Yamaguchi, “On some classes of nilpotent Lie algebras and their automorphism groups,” Mem. Fac. Sci. Kyushu Univ., 35, 341–351 (1981).MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsOmskRussia

Personalised recommendations